These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 38926863)

  • 21. Enhancement of leaching copper by organic agents from waste printed circuit boards in a sulfuric acid solution.
    He J; Zhang M; Chen H; Guo S; Zhu L; Xu J; Zhou K
    Chemosphere; 2022 Nov; 307(Pt 4):135924. PubMed ID: 35934095
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Purification of the leaching solution of recycling zinc from the hazardous electric arc furnace dust through an as-bearing jarosite.
    Khanmohammadi Hazaveh P; Karimi S; Rashchi F; Sheibani S
    Ecotoxicol Environ Saf; 2020 Oct; 202():110893. PubMed ID: 32615495
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nickel-cadmium batteries: effect of electrode phase composition on acid leaching process.
    Nogueira CA; Margarido F
    Environ Technol; 2012; 33(1-3):359-66. PubMed ID: 22519122
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Leaching copper from shredded particles of waste printed circuit boards.
    Yang H; Liu J; Yang J
    J Hazard Mater; 2011 Mar; 187(1-3):393-400. PubMed ID: 21300436
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Process development for recovery of copper and precious metals from waste printed circuit boards with emphasize on palladium and gold leaching and precipitation.
    Behnamfard A; Salarirad MM; Veglio F
    Waste Manag; 2013 Nov; 33(11):2354-63. PubMed ID: 23927928
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Printed circuit board recycling: Physical processing and copper extraction by selective leaching.
    Silvas FP; Correa MM; Caldas MP; de Moraes VT; Espinosa DC; Tenório JA
    Waste Manag; 2015 Dec; 46():503-10. PubMed ID: 26323203
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Metal removal from Municipal Solid Waste Incineration fly ash: A comparison between chemical leaching and bioleaching.
    Funari V; Mäkinen J; Salminen J; Braga R; Dinelli E; Revitzer H
    Waste Manag; 2017 Feb; 60():397-406. PubMed ID: 27478021
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Recovery of metals from a mixture of various spent batteries by a hydrometallurgical process.
    Tanong K; Coudert L; Mercier G; Blais JF
    J Environ Manage; 2016 Oct; 181():95-107. PubMed ID: 27318877
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cross-current leaching of indium from end-of-life LCD panels.
    Rocchetti L; Amato A; Fonti V; Ubaldini S; De Michelis I; Kopacek B; Vegliò F; Beolchini F
    Waste Manag; 2015 Aug; 42():180-7. PubMed ID: 25997989
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sugar yields from dilute oxalic acid pretreatment of maple wood compared to those with other dilute acids and hot water.
    Zhang T; Kumar R; Wyman CE
    Carbohydr Polym; 2013 Jan; 92(1):334-44. PubMed ID: 23218303
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Kinetic spectrophotometric method for the determination of oxalic acid by its catalytic effect on the oxidation of safranine by dichromate.
    Ensafi AA; Abbasi S; Rezaei B
    Spectrochim Acta A Mol Biomol Spectrosc; 2001 Aug; 57(9):1833-8. PubMed ID: 11506034
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Study on the influence of various factors in the hydrometallurgical processing of waste printed circuit boards for copper and gold recovery.
    Birloaga I; De Michelis I; Ferella F; Buzatu M; Vegliò F
    Waste Manag; 2013 Apr; 33(4):935-41. PubMed ID: 23374398
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Kinetics of tetrabromobisphenol A (TBBPA) reactions with H₂SO₄, HNO₃ and HCl: implication for hydrometallurgy of electronic wastes.
    Zhong Y; Li D; Mao Z; Huang W; Peng P; Chen P; Mei J
    J Hazard Mater; 2014 Apr; 270():196-201. PubMed ID: 24594840
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Leaching of valuable elements from thermal power plant bottom ash using a thermo-hydrometallurgical process.
    Bojinova D; Teodosieva R
    Waste Manag Res; 2016 Jun; 34(6):511-7. PubMed ID: 26951342
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Iron dissolution of dust source materials during simulated acidic processing: the effect of sulfuric, acetic, and oxalic acids.
    Chen H; Grassian VH
    Environ Sci Technol; 2013 Sep; 47(18):10312-21. PubMed ID: 23883276
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Leaching and separation of zinc from the black paste of spent MnO2-Zn dry cell batteries.
    El-Nadi YA; Daoud JA; Aly HF
    J Hazard Mater; 2007 May; 143(1-2):328-34. PubMed ID: 17049161
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Effect of Process Conditions on Sulfuric Acid Leaching of Manganese Sludge.
    Safarian J; Eini AS; Pedersen MAE; Haghdani S
    Materials (Basel); 2023 Jun; 16(13):. PubMed ID: 37444907
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Study of the factors influencing the metals solubilisation from a mixture of waste batteries by response surface methodology.
    Tanong K; Coudert L; Chartier M; Mercier G; Blais JF
    Environ Technol; 2017 Dec; 38(24):3167-3179. PubMed ID: 28162038
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A one-step acidification strategy for sewage sludge dewatering with oxalic acid.
    Chen N; Tao S; Xiao K; Liang S; Yang J; Zhang L
    Chemosphere; 2020 Jan; 238():124598. PubMed ID: 31446276
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of temperature on iron leaching from bauxite residue by sulfuric acid.
    Liu ZR; Zeng K; Zhao W; Li Y
    Bull Environ Contam Toxicol; 2009 Jan; 82(1):55-8. PubMed ID: 18949440
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.