BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 38927301)

  • 1. Molecular Basis of Plant-Pathogen Interactions in the Agricultural Context.
    Ijaz U; Zhao C; Shabala S; Zhou M
    Biology (Basel); 2024 Jun; 13(6):. PubMed ID: 38927301
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancement of Plant Productivity in the Post-Genomics Era.
    Thao NP; Tran LS
    Curr Genomics; 2016 Aug; 17(4):295-6. PubMed ID: 27499678
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unveiling Methods to Stimulate Plant Resistance against Pathogens.
    Saberi Riseh R; Gholizadeh Vazvani M
    Front Biosci (Landmark Ed); 2024 May; 29(5):188. PubMed ID: 38812323
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent advances in bio-chemical, molecular and physiological aspects of membrane lipid derivatives in plant pathology.
    Adigun OA; Nadeem M; Pham TH; Jewell LE; Cheema M; Thomas R
    Plant Cell Environ; 2021 Jan; 44(1):1-16. PubMed ID: 33034375
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adoption of CRISPR-Cas for crop production: present status and future prospects.
    Akanmu AO; Asemoloye MD; Marchisio MA; Babalola OO
    PeerJ; 2024; 12():e17402. PubMed ID: 38860212
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Decoding systems biology of plant stress for sustainable agriculture development and optimized food production.
    Shameer K; Naika MBN; Shafi KM; Sowdhamini R
    Prog Biophys Mol Biol; 2019 Aug; 145():19-39. PubMed ID: 30562539
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intricacies of plants' innate immune responses and their dynamic relationship with fungi: A review.
    Tripathi A; Pandey VK; Jha AK; Srivastava S; Jakhar S; Vijay ; Singh G; Rustagi S; Malik S; Choudhary P
    Microbiol Res; 2024 Aug; 285():127758. PubMed ID: 38781787
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic modification strategies for enhancing plant resilience to abiotic stresses in the context of climate change.
    KhokharVoytas A; Shahbaz M; Maqsood MF; Zulfiqar U; Naz N; Iqbal UZ; Sara M; Aqeel M; Khalid N; Noman A; Zulfiqar F; Al Syaad KM; AlShaqhaa MA
    Funct Integr Genomics; 2023 Aug; 23(3):283. PubMed ID: 37642792
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genomic blueprints of soybean (
    Hina A; Razzaq MK; Abbasi A; Shehzad MB; Arshad M; Sanaullah T; Arshad K; Raza G; Ali HM; Hayat F; Akhtar N; Abdelsalam NR
    Funct Plant Biol; 2024 Apr; 51():. PubMed ID: 38669462
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering Resistance Against Viruses in Field Crops Using CRISPR- Cas9.
    Hinge VR; Chavhan RL; Kale SP; Suprasanna P; Kadam US
    Curr Genomics; 2021 Oct; 22(3):214-231. PubMed ID: 34975291
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Join the green team: Inducers of plant immunity in the plant disease sustainable control toolbox.
    Zhu F; Cao MY; Zhang QP; Mohan R; Schar J; Mitchell M; Chen H; Liu F; Wang D; Fu ZQ
    J Adv Res; 2024 Mar; 57():15-42. PubMed ID: 37142184
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Future-Proofing Agriculture: De Novo Domestication for Sustainable and Resilient Crops.
    Rogo U; Simoni S; Fambrini M; Giordani T; Pugliesi C; Mascagni F
    Int J Mol Sci; 2024 Feb; 25(4):. PubMed ID: 38397047
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CRISPR gene editing to improve crop resistance to parasitic plants.
    Jhu MY; Ellison EE; Sinha NR
    Front Genome Ed; 2023; 5():1289416. PubMed ID: 37965302
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome Engineering Technology for Durable Disease Resistance: Recent Progress and Future Outlooks for Sustainable Agriculture.
    Ali Q; Yu C; Hussain A; Ali M; Ahmar S; Sohail MA; Riaz M; Ashraf MF; Abdalmegeed D; Wang X; Imran M; Manghwar H; Zhou L
    Front Plant Sci; 2022; 13():860281. PubMed ID: 35371164
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stop helping pathogens: engineering plant susceptibility genes for durable resistance.
    Garcia-Ruiz H; Szurek B; Van den Ackerveken G
    Curr Opin Biotechnol; 2021 Aug; 70():187-195. PubMed ID: 34153774
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficiency of microbial bio-agents as elicitors in plant defense mechanism under biotic stress: A review.
    Zehra A; Raytekar NA; Meena M; Swapnil P
    Curr Res Microb Sci; 2021 Dec; 2():100054. PubMed ID: 34841345
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Resistance and susceptibility of plants to fungal pathogens.
    Toyoda K; Collins NC; Takahashi A; Shirasu K
    Transgenic Res; 2002 Dec; 11(6):567-82. PubMed ID: 12509131
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Natural variation in priming of basal resistance: from evolutionary origin to agricultural exploitation.
    Ahmad S; Gordon-Weeks R; Pickett J; Ton J
    Mol Plant Pathol; 2010 Nov; 11(6):817-27. PubMed ID: 21029325
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bacterial disease management: challenges, experience, innovation and future prospects: Challenges in Bacterial Molecular Plant Pathology.
    Sundin GW; Castiblanco LF; Yuan X; Zeng Q; Yang CH
    Mol Plant Pathol; 2016 Dec; 17(9):1506-1518. PubMed ID: 27238249
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plant-pathogen interactions: toward development of next-generation disease-resistant plants.
    Nejat N; Rookes J; Mantri NL; Cahill DM
    Crit Rev Biotechnol; 2017 Mar; 37(2):229-237. PubMed ID: 26796880
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.