These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 38927301)

  • 41. The 2023 Latin America report of the
    Hartinger SM; Palmeiro-Silva YK; Llerena-Cayo C; Blanco-Villafuerte L; Escobar LE; Diaz A; Sarmiento JH; Lescano AG; Melo O; Rojas-Rueda D; Takahashi B; Callaghan M; Chesini F; Dasgupta S; Posse CG; Gouveia N; Martins de Carvalho A; Miranda-Chacón Z; Mohajeri N; Pantoja C; Robinson EJZ; Salas MF; Santiago R; Sauma E; Santos-Vega M; Scamman D; Sergeeva M; Souza de Camargo T; Sorensen C; Umaña JD; Yglesias-González M; Walawender M; Buss D; Romanello M
    Lancet Reg Health Am; 2024 May; 33():100746. PubMed ID: 38800647
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Genome editing for resistance against plant pests and pathogens.
    Rato C; Carvalho MF; Azevedo C; Oblessuc PR
    Transgenic Res; 2021 Aug; 30(4):427-459. PubMed ID: 34143358
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A review on nanomaterial-based SERS substrates for sustainable agriculture.
    Mahanty S; Majumder S; Paul R; Boroujerdi R; Valsami-Jones E; Laforsch C
    Sci Total Environ; 2024 Nov; 950():174252. PubMed ID: 38942304
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Genes involved in nonhost disease resistance as a key to engineer durable resistance in crops.
    Fonseca JP; Mysore KS
    Plant Sci; 2019 Feb; 279():108-116. PubMed ID: 30709487
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Advances in S gene targeted genome-editing and its applicability to disease resistance breeding in selected
    Barka GD; Lee J
    Bioengineered; 2022 Jun; 13(6):14646-14666. PubMed ID: 35891620
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Disease Resistance Mechanisms in Plants.
    Andersen EJ; Ali S; Byamukama E; Yen Y; Nepal MP
    Genes (Basel); 2018 Jul; 9(7):. PubMed ID: 29973557
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Plant Immune System: Crosstalk Between Responses to Biotic and Abiotic Stresses the Missing Link in Understanding Plant Defence.
    Nejat N; Mantri N
    Curr Issues Mol Biol; 2017; 23():1-16. PubMed ID: 28154243
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Methods of crop improvement and applications towards fortifying food security.
    Patel A; Miles A; Strackhouse T; Cook L; Leng S; Patel S; Klinger K; Rudrabhatla S; Potlakayala SD
    Front Genome Ed; 2023; 5():1171969. PubMed ID: 37484652
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Molecular effects of resistance elicitors from biological origin and their potential for crop protection.
    Wiesel L; Newton AC; Elliott I; Booty D; Gilroy EM; Birch PR; Hein I
    Front Plant Sci; 2014; 5():655. PubMed ID: 25484886
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Negative Autogenous Control of the Master Type III Secretion System Regulator HrpL in Pseudomonas syringae.
    Waite C; Schumacher J; Jovanovic M; Bennett M; Buck M
    mBio; 2017 Jan; 8(1):. PubMed ID: 28119474
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Biotechnological Tools to Elucidate the Mechanism of Plant and Nematode Interactions.
    Khan A; Chen S; Fatima S; Ahamad L; Siddiqui MA
    Plants (Basel); 2023 Jun; 12(12):. PubMed ID: 37376010
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Impact of biotic stresses on the Brassicaceae family and opportunities for crop improvement by exploiting genotyping traits.
    Das Laha S; Kundu A; Podder S
    Planta; 2024 Mar; 259(5):97. PubMed ID: 38520529
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Nanotechnology and CRISPR/Cas9 system for sustainable agriculture.
    Khanna K; Ohri P; Bhardwaj R
    Environ Sci Pollut Res Int; 2023 Dec; 30(56):118049-118064. PubMed ID: 36973619
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Plant Microbiome: An Ocean of Possibilities for Improving Disease Resistance in Plants.
    Ali S; Tyagi A; Bae H
    Microorganisms; 2023 Feb; 11(2):. PubMed ID: 36838356
    [TBL] [Abstract][Full Text] [Related]  

  • 55. CRISPR-Cas9 and beyond: identifying target genes for developing disease-resistant plants.
    Park HJ; Kim M; Lee D; Kim HJ; Jung HW
    Plant Biol (Stuttg); 2024 Apr; 26(3):369-377. PubMed ID: 38363032
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Multitasking antimicrobial peptides in plant development and host defense against biotic/abiotic stress.
    Goyal RK; Mattoo AK
    Plant Sci; 2014 Nov; 228():135-49. PubMed ID: 25438794
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Seaweed-Based Compounds and Products for Sustainable Protection against Plant Pathogens.
    Shukla PS; Borza T; Critchley AT; Prithiviraj B
    Mar Drugs; 2021 Jan; 19(2):. PubMed ID: 33504049
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Unraveling the enigma of root-knot nematodes: from origins to advanced management strategies in agriculture.
    Vashisth S; Kumar P; Chandel VGS; Kumar R; Verma SC; Chandel RS
    Planta; 2024 Jun; 260(2):36. PubMed ID: 38922545
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Potential Applications of Engineered Nanoparticles in Plant Disease Management: A Critical Update.
    Kumar A; Choudhary A; Kaur H; Guha S; Mehta S; Husen A
    Chemosphere; 2022 May; 295():133798. PubMed ID: 35122813
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Plant immune receptors interact with hemibiotrophic pathogens to activate plant immunity.
    Zhou D; Chen X; Chen X; Xia Y; Liu J; Zhou G
    Front Microbiol; 2023; 14():1252039. PubMed ID: 37876778
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.