These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
110 related articles for article (PubMed ID: 38927317)
1. The Response of Soil Respiration to Temperature and Humidity in the Thermokarst Depression Zone of the Headwater Wetlands of Qinghai Lake. Mao Y; Chen K; Ji W; Yang Y Biology (Basel); 2024 Jun; 13(6):. PubMed ID: 38927317 [TBL] [Abstract][Full Text] [Related]
2. Impact of a thermokarst lake on the soil hydrological properties in permafrost regions of the Qinghai-Tibet Plateau, China. Gao Z; Niu F; Wang Y; Luo J; Lin Z Sci Total Environ; 2017 Jan; 574():751-759. PubMed ID: 27664762 [TBL] [Abstract][Full Text] [Related]
3. Evaluation of thermokarst lake water balance in the Qinghai-Tibet Plateau via isotope tracers. Gao Z; Niu F; Lin Z; Luo J; Yin G; Wang Y Sci Total Environ; 2018 Sep; 636():1-11. PubMed ID: 29702397 [TBL] [Abstract][Full Text] [Related]
4. Effect of Precipitation Variation on Soil Respiration in Rain-Fed Winter Wheat Systems on the Loess Plateau, China. Chu H; Ni H; Ma J; Shen Y Int J Environ Res Public Health; 2022 Jun; 19(11):. PubMed ID: 35682496 [TBL] [Abstract][Full Text] [Related]
5. Thermokarst lakes are hotspots of antibiotic resistance genes in permafrost regions on the Qinghai-Tibet Plateau. Ren Z; Zhang C; Li X; Luo W Environ Pollut; 2024 Mar; 344():123334. PubMed ID: 38218544 [TBL] [Abstract][Full Text] [Related]
7. Hydrogeochemical characteristics and processes of thermokarst lake and groundwater during the melting of the active layer in a permafrost region of the Qinghai-Tibet Plateau, China. Ke X; Li Y; Wang W; Niu F; Gao Z Sci Total Environ; 2022 Dec; 851(Pt 2):158183. PubMed ID: 35995169 [TBL] [Abstract][Full Text] [Related]
8. Using stable isotopes paired with tritium analysis to assess thermokarst lake water balances in the Source Area of the Yellow River, northeastern Qinghai-Tibet Plateau, China. Wan C; Gibson JJ; Shen S; Yi Y; Yi P; Yu Z Sci Total Environ; 2019 Nov; 689():1276-1292. PubMed ID: 31466165 [TBL] [Abstract][Full Text] [Related]
9. Bacterial functional redundancy and carbon metabolism potentials in soil, sediment, and water of thermokarst landscapes across the Qinghai-Tibet Plateau: Implications for the fate of permafrost carbon. Ren Z; Cao S; Chen T; Zhang C; Yu J Sci Total Environ; 2022 Dec; 852():158340. PubMed ID: 36041614 [TBL] [Abstract][Full Text] [Related]
10. Dynamics of Soil Respiration in Alpine Wetland Meadows Exposed to Different Levels of Degradation in the Qinghai-Tibet Plateau, China. Li Z; Gao J; Wen L; Zou C; Feng C; Li D; Xu D Sci Rep; 2019 May; 9(1):7469. PubMed ID: 31097739 [TBL] [Abstract][Full Text] [Related]
11. Lower soil moisture and deep soil temperatures in thermokarst features increase old soil carbon loss after 10 years of experimental permafrost warming. Pegoraro EF; Mauritz ME; Ogle K; Ebert CH; Schuur EAG Glob Chang Biol; 2021 Mar; 27(6):1293-1308. PubMed ID: 33305441 [TBL] [Abstract][Full Text] [Related]
12. Sedimentary organic carbon storage of thermokarst lakes and ponds across Tibetan permafrost region. Wei Z; Du Z; Wang L; Zhong W; Lin J; Xu Q; Xiao C Sci Total Environ; 2022 Jul; 831():154761. PubMed ID: 35339557 [TBL] [Abstract][Full Text] [Related]
13. Divergent Trajectory of Soil Autotrophic and Heterotrophic Respiration upon Permafrost Thaw. Wang G; Chen L; Zhang D; Qin S; Peng Y; Yang G; Wang J; Yu J; Wei B; Liu Y; Li Q; Kang L; Wang Y; Yang Y Environ Sci Technol; 2022 Jul; 56(14):10483-10493. PubMed ID: 35748652 [TBL] [Abstract][Full Text] [Related]
14. High carbon emissions from thermokarst lakes and their determinants in the Tibet Plateau. Mu C; Mu M; Wu X; Jia L; Fan C; Peng X; Ping CL; Wu Q; Xiao C; Liu J Glob Chang Biol; 2023 May; 29(10):2732-2745. PubMed ID: 36854541 [TBL] [Abstract][Full Text] [Related]
15. Accelerating thermokarst lake changes on the Qinghai-Tibetan Plateau. Zhou G; Liu W; Xie C; Song X; Zhang Q; Li Q; Liu G; Li Q; Luo B Sci Rep; 2024 Feb; 14(1):2985. PubMed ID: 38316850 [TBL] [Abstract][Full Text] [Related]
16. Effects of permafrost collapse on soil bacterial communities in a wet meadow on the northern Qinghai-Tibetan Plateau. Wu X; Xu H; Liu G; Zhao L; Mu C BMC Ecol; 2018 Aug; 18(1):27. PubMed ID: 30134875 [TBL] [Abstract][Full Text] [Related]
17. Unraveling of permafrost hydrological variabilities on Central Qinghai-Tibet Plateau using stable isotopic technique. Yang Y; Wu Q; Hou Y; Zhang Z; Zhan J; Gao S; Jin H Sci Total Environ; 2017 Dec; 605-606():199-210. PubMed ID: 28667847 [TBL] [Abstract][Full Text] [Related]
18. Thermokarst rates intensify due to climate change and forest fragmentation in an Alaskan boreal forest lowland. Lara MJ; Genet H; McGuire AD; Euskirchen ES; Zhang Y; Brown DR; Jorgenson MT; Romanovsky V; Breen A; Bolton WR Glob Chang Biol; 2016 Feb; 22(2):816-29. PubMed ID: 26463267 [TBL] [Abstract][Full Text] [Related]
19. [Soil properties and microbial respiration activities of riparian forest wetland in the north of permafrost zone, the Great Hing'an Mountains, Northeast China]. Wang XW; Tan WW; Song CC; DU Y; Zhang H; Chen N Ying Yong Sheng Tai Xue Bao; 2021 Dec; 32(12):4237-4246. PubMed ID: 34951264 [TBL] [Abstract][Full Text] [Related]
20. A shift of thermokarst lakes from carbon sources to sinks during the Holocene epoch. Anthony KM; Zimov SA; Grosse G; Jones MC; Anthony PM; Chapin FS; Finlay JC; Mack MC; Davydov S; Frenzel P; Frolking S Nature; 2014 Jul; 511(7510):452-6. PubMed ID: 25043014 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]