These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 38927604)

  • 1. Advances in and Perspectives on Transgenic Technology and CRISPR-Cas9 Gene Editing in Broccoli.
    Zhang L; Meng S; Liu Y; Han F; Xu T; Zhao Z; Li Z
    Genes (Basel); 2024 May; 15(6):. PubMed ID: 38927604
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CRISPR-Cas9-Mediated Gene Editing of
    Neequaye M; Stavnstrup S; Harwood W; Lawrenson T; Hundleby P; Irwin J; Troncoso-Rey P; Saha S; Traka MH; Mithen R; Østergaard L
    CRISPR J; 2021 Jun; 4(3):416-426. PubMed ID: 34152214
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CRISPR/Cas genome editing in plants: Dawn of Agrobacterium transformation for recalcitrant and transgene-free plants for future crop breeding.
    Antony Ceasar S; Ignacimuthu S
    Plant Physiol Biochem; 2023 Mar; 196():724-730. PubMed ID: 36812799
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A highly efficient genetic transformation system for broccoli and subcellular localization.
    Zhao Y; Yang D; Liu Y; Han F; Li Z
    Front Plant Sci; 2023; 14():1091588. PubMed ID: 36937998
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Creating Targeted Gene Knockouts in Brassica oleracea Using CRISPR/Cas9.
    Lawrenson T; Hundleby P; Harwood W
    Methods Mol Biol; 2019; 1917():155-170. PubMed ID: 30610635
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CRISPR/Cas9 for Mutagenesis in Rice.
    Char SN; Li R; Yang B
    Methods Mol Biol; 2019; 1864():279-293. PubMed ID: 30415343
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome Editing in Brassica juncea Using CRISPR/Cas9 Technology.
    Ahmad N; Fatima S; Hundleby P; Mehboob-Ur-Rahman
    Methods Mol Biol; 2024; 2788():337-354. PubMed ID: 38656524
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient genome editing of Brassica campestris based on the CRISPR/Cas9 system.
    Xiong X; Liu W; Jiang J; Xu L; Huang L; Cao J
    Mol Genet Genomics; 2019 Oct; 294(5):1251-1261. PubMed ID: 31129735
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CRISPR/Cas: A powerful tool for gene function study and crop improvement.
    Zhang D; Zhang Z; Unver T; Zhang B
    J Adv Res; 2021 Mar; 29():207-221. PubMed ID: 33842017
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome Editing in Soybean with CRISPR/Cas9.
    Liu J; Gunapati S; Mihelich NT; Stec AO; Michno JM; Stupar RM
    Methods Mol Biol; 2019; 1917():217-234. PubMed ID: 30610639
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An Agrobacterium-Mediated CRISPR/Cas9 Platform for Genome Editing in Maize.
    Lee K; Zhu H; Yang B; Wang K
    Methods Mol Biol; 2019; 1917():121-143. PubMed ID: 30610633
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An efficient and specific CRISPR-Cas9 genome editing system targeting soybean phytoene desaturase genes.
    Lu QSM; Tian L
    BMC Biotechnol; 2022 Feb; 22(1):7. PubMed ID: 35168613
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient CRISPR/Cas9-based genome editing in carrot cells.
    Klimek-Chodacka M; Oleszkiewicz T; Lowder LG; Qi Y; Baranski R
    Plant Cell Rep; 2018 Apr; 37(4):575-586. PubMed ID: 29332168
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A simplified and improved protocol of rice transformation to cater wide range of rice cultivars.
    Rengasamy B; Manna M; Jonwal S; Sathiyabama M; Thajuddin NB; Sinha AK
    Protoplasma; 2024 Jul; 261(4):641-654. PubMed ID: 38217739
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CRISPR/Cas9-mediated mutagenesis of phytoene desaturase in pigeonpea and groundnut.
    Prasad K; Gadeela H; Bommineni PR; Reddy PS; Tyagi W; Yogendra K
    Funct Integr Genomics; 2024 Mar; 24(2):57. PubMed ID: 38478115
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Agrobacterium-Mediated Transformation for the Development of Transgenic Crops; Present and Future Prospects.
    Rahman SU; Khan MO; Ullah R; Ahmad F; Raza G
    Mol Biotechnol; 2024 Aug; 66(8):1836-1852. PubMed ID: 37573566
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CRISPR/Cas9-based precise excision of SlHyPRP1 domain(s) to obtain salt stress-tolerant tomato.
    Tran MT; Doan DTH; Kim J; Song YJ; Sung YW; Das S; Kim EJ; Son GH; Kim SH; Van Vu T; Kim JY
    Plant Cell Rep; 2021 Jun; 40(6):999-1011. PubMed ID: 33074435
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploring the potential of CRISPR/Cas genome editing for vegetable crop improvement: An overview of challenges and approaches.
    Das T; Anand U; Pal T; Mandal S; Kumar M; Radha ; Gopalakrishnan AV; Lastra JMP; Dey A
    Biotechnol Bioeng; 2023 May; 120(5):1215-1228. PubMed ID: 36740587
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CRISPR-Based Genome Editing: Advancements and Opportunities for Rice Improvement.
    Zegeye WA; Tsegaw M; Zhang Y; Cao L
    Int J Mol Sci; 2022 Apr; 23(8):. PubMed ID: 35457271
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gene Editing in Sorghum Through Agrobacterium.
    Sander JD
    Methods Mol Biol; 2019; 1931():155-168. PubMed ID: 30652289
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.