These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 38927756)

  • 1. Zooming into the Complex Dynamics of Electrodermal Activity Recorded during Emotional Stimuli: A Multiscale Approach.
    Lavezzo L; Gargano A; Scilingo EP; Nardelli M
    Bioengineering (Basel); 2024 May; 11(6):. PubMed ID: 38927756
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ComEDA: A new tool for stress assessment based on electrodermal activity.
    Nardelli M; Greco A; Sebastiani L; Scilingo EP
    Comput Biol Med; 2022 Nov; 150():106144. PubMed ID: 36215850
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Emotion Recognition Using Electrodermal Activity Signals and Multiscale Deep Convolutional Neural Network.
    Ganapathy N; Veeranki YR; Kumar H; Swaminathan R
    J Med Syst; 2021 Mar; 45(4):49. PubMed ID: 33660087
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Emotion Recognition Using Electrodermal Activity Signals and Multiscale Deep Convolution Neural Network.
    Ganapathy N; Swaminathan R
    Stud Health Technol Inform; 2019; 258():140. PubMed ID: 30942731
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep Learning Framework for Categorical Emotional States Assessment Using Electrodermal Activity Signals.
    Govarthan PK; Sriram Kumar P ; Ganapathy N; Agastinose Ronickom JF
    Stud Health Technol Inform; 2023 Jun; 305():40-43. PubMed ID: 37386952
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative Analysis of Electrodermal Activity Decomposition Methods in Emotion Detection Using Machine Learning.
    Sriram Kumar P ; Govarthan PK; Ganapathy N; Agastinose Ronickom JF
    Stud Health Technol Inform; 2023 May; 302():73-77. PubMed ID: 37203612
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Non-Parametric Classifiers Based Emotion Classification Using Electrodermal Activity and Modified Hjorth Features.
    Veeranki YR; Ganapathy N; Swaminathan R
    Stud Health Technol Inform; 2021 May; 281():163-167. PubMed ID: 34042726
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Emotion Analysis Using Electrodermal Signals and Spiking Deep Belief Network.
    Ganapathy N; Swaminathan R
    Stud Health Technol Inform; 2020 Jun; 270():1269-1270. PubMed ID: 32570613
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combining Electrodermal Activity and Speech Analysis towards a more Accurate Emotion Recognition System.
    Greco A; Marzi C; Lanata A; Scilingo EP; Vanello N
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():229-232. PubMed ID: 31945884
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Emotion Recognition With Knowledge Graph Based on Electrodermal Activity.
    Perry Fordson H; Xing X; Guo K; Xu X
    Front Neurosci; 2022; 16():911767. PubMed ID: 35757534
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimal Electrodermal Activity Segment for Enhanced Emotion Recognition Using Spectrogram-Based Feature Extraction and Machine Learning.
    P SK; Agastinose Ronickom JF
    Int J Neural Syst; 2024 May; 34(5):2450027. PubMed ID: 38511233
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrodermal activity analysis during affective haptic elicitation.
    Greco A; Valenza G; Nardelli M; Bianchi M; Lanata A; Scilingo EP
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():5777-80. PubMed ID: 26737605
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessing Autonomic Function from Electrodermal Activity and Heart Rate Variability During Cold-Pressor Test and Emotional Challenge.
    Ghiasi S; Greco A; Barbieri R; Scilingo EP; Valenza G
    Sci Rep; 2020 Mar; 10(1):5406. PubMed ID: 32214158
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly sensitive index of sympathetic activity based on time-frequency spectral analysis of electrodermal activity.
    Posada-Quintero HF; Florian JP; Orjuela-Cañón ÁD; Chon KH
    Am J Physiol Regul Integr Comp Physiol; 2016 Sep; 311(3):R582-91. PubMed ID: 27440716
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrodermal Activity Is Sensitive to Sleep Deprivation but Does Not Moderate the Effect of Total Sleep Deprivation on Affect.
    Kurinec CA; Stenson AR; Hinson JM; Whitney P; Van Dongen HPA
    Front Behav Neurosci; 2022; 16():885302. PubMed ID: 35860724
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [The measurement of electrodermal activity].
    Grapperon J; Pignol AC; Vion-Dury J
    Encephale; 2012 Apr; 38(2):149-55. PubMed ID: 22516273
    [TBL] [Abstract][Full Text] [Related]  

  • 17. EDA-Graph: Graph Signal Processing of Electrodermal Activity for Emotional States Detection.
    Mercado-Diaz LR; Veeranki YR; Marmolejo-Ramos F; Posada-Quintero HF
    IEEE J Biomed Health Inform; 2024 Aug; 28(8):4599-4612. PubMed ID: 38801681
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Examining the consistency of continuous affect annotations and psychophysiological measures in response to emotional videos.
    Kim I; Kim H; Kim J
    Int J Psychophysiol; 2023 Nov; 193():112242. PubMed ID: 37716441
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biosignal-Based Multimodal Emotion Recognition in a Valence-Arousal Affective Framework Applied to Immersive Video Visualization.
    Pinto J; Fred A; da Silva HP
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3577-3583. PubMed ID: 31946651
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detecting Emotions through Electrodermal Activity in Learning Contexts: A Systematic Review.
    Horvers A; Tombeng N; Bosse T; Lazonder AW; Molenaar I
    Sensors (Basel); 2021 Nov; 21(23):. PubMed ID: 34883870
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.