BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 38928029)

  • 21. The production of wax esters in transgenic plants: 
towards a sustainable source of bio-lubricants.
    Domergue F; Miklaszewska M
    J Exp Bot; 2022 May; 73(9):2817-2834. PubMed ID: 35560197
    [TBL] [Abstract][Full Text] [Related]  

  • 22. RNAi targeting putative genes in phosphatidylcholine turnover results in significant change in fatty acid composition in Crambe abyssinica seed oil.
    Guan R; Li X; Hofvander P; Zhou XR; Wang D; Stymne S; Zhu LH
    Lipids; 2015 Apr; 50(4):407-16. PubMed ID: 25753896
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Increasing erucic acid content through combination of endogenous low polyunsaturated fatty acids alleles with Ld-LPAAT + Bn-fae1 transgenes in rapeseed (Brassica napus L.).
    Nath UK; Wilmer JA; Wallington EJ; Becker HC; Möllers C
    Theor Appl Genet; 2009 Feb; 118(4):765-73. PubMed ID: 19050848
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Limnanthes douglasii erucic acid-specific lysophospatidic acid acyltransferase activity in oilseed rape: an analysis of biochemical effects.
    Wilmer JA; Brown AP; Forsyth K; Carnaby S; Barsby T; Slabas AR
    Biochem Soc Trans; 2000 Dec; 28(6):964-6. PubMed ID: 11171273
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Lysophosphatidic acid acyltransferase from meadowfoam mediates insertion of erucic acid at the sn-2 position of triacylglycerol in transgenic rapeseed oil.
    Lassner MW; Levering CK; Davies HM; Knutzon DS
    Plant Physiol; 1995 Dec; 109(4):1389-94. PubMed ID: 8539298
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Piriformospora indica promotes growth, seed yield and quality of Brassica napus L.
    Su ZZ; Wang T; Shrivastava N; Chen YY; Liu X; Sun C; Yin Y; Gao QK; Lou BG
    Microbiol Res; 2017 Jun; 199():29-39. PubMed ID: 28454707
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identification of target genes and processes involved in erucic acid accumulation during seed development in the biodiesel feedstock Pennycress (Thlaspi arvense L.).
    Claver A; Rey R; López MV; Picorel R; Alfonso M
    J Plant Physiol; 2017 Jan; 208():7-16. PubMed ID: 27889523
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Purification of a jojoba embryo fatty acyl-coenzyme A reductase and expression of its cDNA in high erucic acid rapeseed.
    Metz JG; Pollard MR; Anderson L; Hayes TR; Lassner MW
    Plant Physiol; 2000 Mar; 122(3):635-44. PubMed ID: 10712526
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Camelina sativa: An ideal platform for the metabolic engineering and field production of industrial lipids.
    Bansal S; Durrett TP
    Biochimie; 2016 Jan; 120():9-16. PubMed ID: 26107412
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An engineered oilseed crop produces oil enriched in two very long chain polyunsaturated fatty acids with potential health-promoting properties.
    Meesapyodsuk D; Ye S; Chen Y; Chen Y; Chapman RG; Qiu X
    Metab Eng; 2018 Sep; 49():192-200. PubMed ID: 30149205
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Modification of erucic acid content in Indian mustard (Brassica juncea) by up-regulation and down-regulation of the Brassica juncea FAT TY ACID ELONGATION1 (BjFAE1) gene.
    Kanrar S; Venkateswari J; Dureja P; Kirti PB; Chopra VL
    Plant Cell Rep; 2006 Mar; 25(2):148-55. PubMed ID: 16322995
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Development of high-oleic, low-linolenic acid Ethiopian-mustard (Brassica carinata) germplasm.
    Velasco L; Nabloussi A; De Haro A; Fernández-Martínez JM
    Theor Appl Genet; 2003 Sep; 107(5):823-30. PubMed ID: 12756471
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Metabolic engineering of fatty acid biosynthesis in plants.
    Thelen JJ; Ohlrogge JB
    Metab Eng; 2002 Jan; 4(1):12-21. PubMed ID: 11800570
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Production of wax esters in plant seed oils by oleosomal cotargeting of biosynthetic enzymes.
    Heilmann M; Iven T; Ahmann K; Hornung E; Stymne S; Feussner I
    J Lipid Res; 2012 Oct; 53(10):2153-2161. PubMed ID: 22878160
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Solvent extraction and characterization of
    Redda ZT; Laß-Seyoum A; Yimam A; Barz M; Jabasingh SA
    Biomass Convers Biorefin; 2022 Nov; ():1-20. PubMed ID: 36406949
    [TBL] [Abstract][Full Text] [Related]  

  • 36. CRISPR/Cas9-Mediated Gene Editing of
    Shi J; Ni X; Huang J; Fu Y; Wang T; Yu H; Zhang Y
    Genes (Basel); 2022 Sep; 13(10):. PubMed ID: 36292566
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Seed-specific increased expression of 2S albumin promoter of sesame qualifies it as a useful genetic tool for fatty acid metabolic engineering and related transgenic intervention in sesame and other oil seed crops.
    Bhunia RK; Chakraborty A; Kaur R; Gayatri T; Bhattacharyya J; Basu A; Maiti MK; Sen SK
    Plant Mol Biol; 2014 Nov; 86(4-5):351-65. PubMed ID: 25139230
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cumulative effect of heterologous AtWRI1 gene expression and endogenous BjAGPase gene silencing increases seed lipid content in Indian mustard Brassica juncea.
    Bhattacharya S; Das N; Maiti MK
    Plant Physiol Biochem; 2016 Oct; 107():204-213. PubMed ID: 27314514
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Metabolic engineering of edible plant oils].
    Yue AQ; Sun XP; Li RZ
    Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao; 2007 Dec; 33(6):489-98. PubMed ID: 18349502
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Increased production of wax esters in transgenic tobacco plants by expression of a fatty acid reductase:wax synthase gene fusion.
    Aslan S; Hofvander P; Dutta P; Sun C; Sitbon F
    Transgenic Res; 2015 Dec; 24(6):945-53. PubMed ID: 26138876
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.