BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 38928029)

  • 41. Control of erucic acid biosynthesis in Camelina (Camelina sativa) by antisense technology.
    Bashiri H; Kahrizi D; Salmanian AH; Rahnama H; Azadi P
    Cell Mol Biol (Noisy-le-grand); 2023 Jul; 69(7):212-217. PubMed ID: 37715377
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Improving seed germination and oil contents by regulating the GDSL transcriptional level in Brassica napus.
    Ding LN; Guo XJ; Li M; Fu ZL; Yan SZ; Zhu KM; Wang Z; Tan XL
    Plant Cell Rep; 2019 Feb; 38(2):243-253. PubMed ID: 30535511
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Selection for low erucic acid and genetic mapping of loci affecting the accumulation of very long-chain fatty acids in meadowfoam seed storage lipids.
    Gandhi SD; Kishore VK; Crane JM; Slabaugh MB; Knapp SJ
    Genome; 2009 Jun; 52(6):547-56. PubMed ID: 19483773
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Transgenic and Genome Editing Approaches for Modifying Plant Oils.
    Wayne LL; Gachotte DJ; Walsh TA
    Methods Mol Biol; 2019; 1864():367-394. PubMed ID: 30415347
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Increasing jojoba-like wax ester production in Saccharomyces cerevisiae by enhancing very long-chain, monounsaturated fatty acid synthesis.
    Wenning L; Ejsing CS; David F; Sprenger RR; Nielsen J; Siewers V
    Microb Cell Fact; 2019 Mar; 18(1):49. PubMed ID: 30857535
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The impact of reducing fatty acid desaturation on the composition and thermal stability of rapeseed oil.
    Kaur H; Wang L; Stawniak N; Sloan R; van Erp H; Eastmond P; Bancroft I
    Plant Biotechnol J; 2020 Apr; 18(4):983-991. PubMed ID: 31553825
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Altered seed oil and glucosinolate levels in transgenic plants overexpressing the Brassica napus SHOOTMERISTEMLESS gene.
    Elhiti M; Yang C; Chan A; Durnin DC; Belmonte MF; Ayele BT; Tahir M; Stasolla C
    J Exp Bot; 2012 Jul; 63(12):4447-61. PubMed ID: 22563121
    [TBL] [Abstract][Full Text] [Related]  

  • 48. QTL for phytosterol and sinapate ester content in Brassica napus L. collocate with the two erucic acid genes.
    Amar S; Ecke W; Becker HC; Möllers C
    Theor Appl Genet; 2008 May; 116(8):1051-61. PubMed ID: 18335203
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Current progress towards the metabolic engineering of plant seed oil for hydroxy fatty acids production.
    Lee KR; Chen GQ; Kim HU
    Plant Cell Rep; 2015 Apr; 34(4):603-15. PubMed ID: 25577331
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Transgenic increases in seed oil content are associated with the differential expression of novel Brassica-specific transcripts.
    Sharma N; Anderson M; Kumar A; Zhang Y; Giblin EM; Abrams SR; Zaharia LI; Taylor DC; Fobert PR
    BMC Genomics; 2008 Dec; 9():619. PubMed ID: 19099582
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Overexpression of Soybean
    Wang Z; Wang Y; Shang P; Yang C; Yang M; Huang J; Ren B; Zuo Z; Zhang Q; Li W; Song B
    Int J Mol Sci; 2022 May; 23(9):. PubMed ID: 35563472
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Strong co-suppression impedes an increase in polyunsaturated fatty acids in seeds overexpressing FAD2.
    Du C; Chen Y; Wang K; Yang Z; Zhao C; Jia Q; Taylor DC; Zhang M
    J Exp Bot; 2019 Feb; 70(3):985-994. PubMed ID: 30371807
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Down-regulation of crambe fatty acid desaturase and elongase in Arabidopsis and crambe resulted in significantly increased oleic acid content in seed oil.
    Li X; Mei D; Liu Q; Fan J; Singh S; Green A; Zhou XR; Zhu LH
    Plant Biotechnol J; 2016 Jan; 14(1):323-31. PubMed ID: 25998013
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Analysis of QTLs for erucic acid and oil content in seeds on A8 chromosome and the linkage drag between the alleles for the two traits in Brassica napus.
    Cao Z; Tian F; Wang N; Jiang C; Lin B; Xia W; Shi J; Long Y; Zhang C; Meng J
    J Genet Genomics; 2010 Apr; 37(4):231-40. PubMed ID: 20439099
    [TBL] [Abstract][Full Text] [Related]  

  • 55. In Silico Analysis of Fatty Acid Desaturases Structures in
    Raboanatahiry N; Yin Y; Chen K; He J; Yu L; Li M
    Int J Mol Sci; 2021 Oct; 22(19):. PubMed ID: 34639198
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Phloem transport of amino acids in two Brassica napus L. genotypes and one B. carinata genotype in relation to their seed protein content.
    Lohaus G; Moellers C
    Planta; 2000 Nov; 211(6):833-40. PubMed ID: 11144268
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Metabolic engineering plant seeds with fish oil-like levels of DHA.
    Petrie JR; Shrestha P; Zhou XR; Mansour MP; Liu Q; Belide S; Nichols PD; Singh SP
    PLoS One; 2012; 7(11):e49165. PubMed ID: 23145108
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Regulation of FATTY ACID ELONGATION1 expression and production in Brassica oleracea and Capsella rubella.
    Li D; Lei Z; Xue J; Zhou G; Hang Y; Sun X
    Planta; 2017 Oct; 246(4):763-778. PubMed ID: 28674753
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Purification of a jojoba embryo wax synthase, cloning of its cDNA, and production of high levels of wax in seeds of transgenic arabidopsis.
    Lardizabal KD; Metz JG; Sakamoto T; Hutton WC; Pollard MR; Lassner MW
    Plant Physiol; 2000 Mar; 122(3):645-55. PubMed ID: 10712527
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Assessment of FAE1 polymorphisms in three Brassica species using EcoTILLING and their association with differences in seed erucic acid contents.
    Wang N; Shi L; Tian F; Ning H; Wu X; Long Y; Meng J
    BMC Plant Biol; 2010 Jul; 10():137. PubMed ID: 20594317
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.