These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 38928029)

  • 61. Phenotypic Diversity in Leaf Cuticular Waxes in
    Tomasi P; Abdel-Haleem H
    Plants (Basel); 2023 Oct; 12(21):. PubMed ID: 37960072
    [No Abstract]   [Full Text] [Related]  

  • 62. High-level accumulation of oleyl oleate in plant seed oil by abundant supply of oleic acid substrates to efficient wax ester synthesis enzymes.
    Yu D; Hornung E; Iven T; Feussner I
    Biotechnol Biofuels; 2018; 11():53. PubMed ID: 29507605
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Industrial oils from transgenic plants.
    Jaworski J; Cahoon EB
    Curr Opin Plant Biol; 2003 Apr; 6(2):178-84. PubMed ID: 12667876
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Metabolic engineering of plant oils and waxes for use as industrial feedstocks.
    Vanhercke T; Wood CC; Stymne S; Singh SP; Green AG
    Plant Biotechnol J; 2013 Feb; 11(2):197-210. PubMed ID: 23190163
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Functional characterization of beta-ketoacyl-CoA synthase genes from Brassica napus L.
    Han J; Lühs W; Sonntag K; Zähringer U; Borchardt DS; Wolter FP; Heinz E; Frentzen M
    Plant Mol Biol; 2001 May; 46(2):229-39. PubMed ID: 11442062
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Transgressive segregation of erucic acid content in Brassica carinata A. Braun.
    del Río M; de Haro A; Fernández-Martínez JM
    Theor Appl Genet; 2003 Aug; 107(4):643-51. PubMed ID: 12759732
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Review: Metabolic engineering of unusual lipids in the synthetic biology era.
    Aznar-Moreno JA; Durrett TP
    Plant Sci; 2017 Oct; 263():126-131. PubMed ID: 28818368
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Industrial protein production crops: new needs and new opportunities.
    Herman EM; Schmidt MA
    GM Crops; 2010; 1(1):2-7. PubMed ID: 21912205
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Rapeseed species and environmental concerns related to loss of seeds of genetically modified oilseed rape in Japan.
    Nishizawa T; Tamaoki M; Aono M; Kubo A; Saji H; Nakajima N
    GM Crops; 2010; 1(3):143-56. PubMed ID: 21844669
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Metabolic control analysis is helpful for informed genetic manipulation of oilseed rape (Brassica napus) to increase seed oil content.
    Weselake RJ; Shah S; Tang M; Quant PA; Snyder CL; Furukawa-Stoffer TL; Zhu W; Taylor DC; Zou J; Kumar A; Hall L; Laroche A; Rakow G; Raney P; Moloney MM; Harwood JL
    J Exp Bot; 2008; 59(13):3543-9. PubMed ID: 18703491
    [TBL] [Abstract][Full Text] [Related]  

  • 71. A major QTL on chromosome C05 significantly reduces acid detergent lignin (ADL) content and increases seed oil and protein content in oilseed rape (Brassica napus L.).
    Behnke N; Suprianto E; Möllers C
    Theor Appl Genet; 2018 Nov; 131(11):2477-2492. PubMed ID: 30143828
    [TBL] [Abstract][Full Text] [Related]  

  • 72. GLC analysis of Indian rapeseed-mustard to study the variability of fatty acid composition.
    Kaushik N; Agnihotri A
    Biochem Soc Trans; 2000 Dec; 28(6):581-3. PubMed ID: 11171132
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Breeding response of transcript profiling in developing seeds of Brassica napus.
    Hu Y; Wu G; Cao Y; Wu Y; Xiao L; Li X; Lu C
    BMC Mol Biol; 2009 May; 10():49. PubMed ID: 19463193
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Wax esters of different compositions produced via engineering of leaf chloroplast metabolism in Nicotiana benthamiana.
    Aslan S; Sun C; Leonova S; Dutta P; Dörmann P; Domergue F; Stymne S; Hofvander P
    Metab Eng; 2014 Sep; 25():103-12. PubMed ID: 25038447
    [TBL] [Abstract][Full Text] [Related]  

  • 75. A fatty acid condensing enzyme from Physaria fendleri increases hydroxy fatty acid accumulation in transgenic oilseeds of Camelina sativa.
    Snapp AR; Kang J; Qi X; Lu C
    Planta; 2014 Sep; 240(3):599-610. PubMed ID: 25023632
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Significant increase of oleic acid level in the wild species Lepidium campestre through direct gene silencing.
    Ivarson E; Ahlman A; Lager I; Zhu LH
    Plant Cell Rep; 2016 Oct; 35(10):2055-63. PubMed ID: 27313135
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Reduced expression of FatA thioesterases in Arabidopsis affects the oil content and fatty acid composition of the seeds.
    Moreno-Pérez AJ; Venegas-Calerón M; Vaistij FE; Salas JJ; Larson TR; Garcés R; Graham IA; Martínez-Force E
    Planta; 2012 Mar; 235(3):629-39. PubMed ID: 22002626
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Increased Cuticle Waxes by Overexpression of WSD1 Improves Osmotic Stress Tolerance in
    Abdullah HM; Rodriguez J; Salacup JM; Castañeda IS; Schnell DJ; Pareek A; Dhankher OP
    Int J Mol Sci; 2021 May; 22(10):. PubMed ID: 34068347
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Enhanced seed oil production in canola by conditional expression of Brassica napus LEAFY COTYLEDON1 and LEC1-LIKE in developing seeds.
    Tan H; Yang X; Zhang F; Zheng X; Qu C; Mu J; Fu F; Li J; Guan R; Zhang H; Wang G; Zuo J
    Plant Physiol; 2011 Jul; 156(3):1577-88. PubMed ID: 21562329
    [TBL] [Abstract][Full Text] [Related]  

  • 80. The linin promoter is highly effective in enhancing punicic acid production in Arabidopsis.
    Song Z; Mietkiewska E; Weselake RJ
    Plant Cell Rep; 2017 Mar; 36(3):447-457. PubMed ID: 27999978
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.