BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 38928228)

  • 21. ApoE-Isoform-Dependent SARS-CoV-2 Neurotropism and Cellular Response.
    Wang C; Zhang M; Garcia G; Tian E; Cui Q; Chen X; Sun G; Wang J; Arumugaswami V; Shi Y
    Cell Stem Cell; 2021 Feb; 28(2):331-342.e5. PubMed ID: 33450186
    [TBL] [Abstract][Full Text] [Related]  

  • 22. iPSC-derived three-dimensional brain organoid models and neurotropic viral infections.
    Swingler M; Donadoni M; Bellizzi A; Cakir S; Sariyer IK
    J Neurovirol; 2023 Apr; 29(2):121-134. PubMed ID: 37097597
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Modeling neurological disorders using brain organoids.
    Zhang DY; Song H; Ming GL
    Semin Cell Dev Biol; 2021 Mar; 111():4-14. PubMed ID: 32561297
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Infection of Brain Organoids and 2D Cortical Neurons with SARS-CoV-2 Pseudovirus.
    Yi SA; Nam KH; Yun J; Gim D; Joe D; Kim YH; Kim HJ; Han JW; Lee J
    Viruses; 2020 Sep; 12(9):. PubMed ID: 32911874
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Neurotropic Effects of SARS-CoV-2 Modeled by the Human Brain Organoids.
    Ramani A; Pranty AI; Gopalakrishnan J
    Stem Cell Reports; 2021 Mar; 16(3):373-384. PubMed ID: 33631123
    [TBL] [Abstract][Full Text] [Related]  

  • 26. In Vitro Models for Studying Respiratory Host-Pathogen Interactions.
    Barron SL; Saez J; Owens RM
    Adv Biol (Weinh); 2021 Jun; 5(6):e2000624. PubMed ID: 33943040
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The SARS-CoV-2 spike protein alters barrier function in 2D static and 3D microfluidic in-vitro models of the human blood-brain barrier.
    Buzhdygan TP; DeOre BJ; Baldwin-Leclair A; Bullock TA; McGary HM; Khan JA; Razmpour R; Hale JF; Galie PA; Potula R; Andrews AM; Ramirez SH
    Neurobiol Dis; 2020 Dec; 146():105131. PubMed ID: 33053430
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Three-dimensional modeling of human neurodegeneration: brain organoids coming of age.
    Grenier K; Kao J; Diamandis P
    Mol Psychiatry; 2020 Feb; 25(2):254-274. PubMed ID: 31444473
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Emerging Brain-Pathophysiology-Mimetic Platforms for Studying Neurodegenerative Diseases: Brain Organoids and Brains-on-a-Chip.
    Bang S; Lee S; Choi N; Kim HN
    Adv Healthc Mater; 2021 Jun; 10(12):e2002119. PubMed ID: 34028201
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The role of biomaterials and three dimensional (3D) in vitro tissue models in fighting against COVID-19.
    Seyfoori A; Amereh M; Dabiri SMH; Askari E; Walsh T; Akbari M
    Biomater Sci; 2021 Feb; 9(4):1217-1226. PubMed ID: 33355542
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Modeling Host-Pathogen Interactions in the Context of the Microenvironment: Three-Dimensional Cell Culture Comes of Age.
    Barrila J; Crabbé A; Yang J; Franco K; Nydam SD; Forsyth RJ; Davis RR; Gangaraju S; Ott CM; Coyne CB; Bissell MJ; Nickerson CA
    Infect Immun; 2018 Nov; 86(11):. PubMed ID: 30181350
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Lung Organoids as Model to Study SARS-CoV-2 Infection.
    Peng L; Gao L; Wu X; Fan Y; Liu M; Chen J; Song J; Kong J; Dong Y; Li B; Liu A; Bao F
    Cells; 2022 Sep; 11(17):. PubMed ID: 36078166
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Human Nasal Organoids Model SARS-CoV-2 Upper Respiratory Infection and Recapitulate the Differential Infectivity of Emerging Variants.
    Chiu MC; Li C; Liu X; Song W; Wan Z; Yu Y; Huang J; Xiao D; Chu H; Cai JP; To KK; Yuen KY; Zhou J
    mBio; 2022 Aug; 13(4):e0194422. PubMed ID: 35938726
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biomaterial-guided stem cell organoid engineering for modeling development and diseases.
    Hoang P; Ma Z
    Acta Biomater; 2021 Sep; 132():23-36. PubMed ID: 33486104
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Three-dimensional in vitro tissue culture models of brain organoids.
    Gong J; Meng T; Yang J; Hu N; Zhao H; Tian T
    Exp Neurol; 2021 May; 339():113619. PubMed ID: 33497645
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Advances in modelling the human microbiome-gut-brain axis in vitro.
    Moysidou CM; Owens RM
    Biochem Soc Trans; 2021 Feb; 49(1):187-201. PubMed ID: 33544117
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Organ-on-Chip platforms to study tumor evolution and chemosensitivity.
    Dsouza VL; Kuthethur R; Kabekkodu SP; Chakrabarty S
    Biochim Biophys Acta Rev Cancer; 2022 May; 1877(3):188717. PubMed ID: 35304293
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bioengineered
    Chakraborty J; Banerjee I; Vaishya R; Ghosh S
    ACS Biomater Sci Eng; 2020 Dec; 6(12):6540-6555. PubMed ID: 33320635
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Modelling host-
    Chandrasegaran P; Nabilla Lestari A; Sinton MC; Gopalakrishnan J; Quintana JF
    F1000Res; 2023; 12():437. PubMed ID: 37588058
    [No Abstract]   [Full Text] [Related]  

  • 40. Human iPSC-Based Modeling of Central Nerve System Disorders for Drug Discovery.
    Qian L; Tcw J
    Int J Mol Sci; 2021 Jan; 22(3):. PubMed ID: 33530458
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.