These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 38928346)

  • 1. Adapt-cMolGPT: A Conditional Generative Pre-Trained Transformer with Adapter-Based Fine-Tuning for Target-Specific Molecular Generation.
    Yoo S; Kim J
    Int J Mol Sci; 2024 Jun; 25(12):. PubMed ID: 38928346
    [TBL] [Abstract][Full Text] [Related]  

  • 2. cMolGPT: A Conditional Generative Pre-Trained Transformer for Target-Specific De Novo Molecular Generation.
    Wang Y; Zhao H; Sciabola S; Wang W
    Molecules; 2023 May; 28(11):. PubMed ID: 37298906
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MTMol-GPT: De novo multi-target molecular generation with transformer-based generative adversarial imitation learning.
    Ai C; Yang H; Liu X; Dong R; Ding Y; Guo F
    PLoS Comput Biol; 2024 Jun; 20(6):e1012229. PubMed ID: 38924082
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generative Pre-trained Transformer (GPT) based model with relative attention for de novo drug design.
    Haroon S; C A H; A S J
    Comput Biol Chem; 2023 Oct; 106():107911. PubMed ID: 37450999
    [TBL] [Abstract][Full Text] [Related]  

  • 5. FSM-DDTR: End-to-end feedback strategy for multi-objective De Novo drug design using transformers.
    Monteiro NRC; Pereira TO; Machado ACD; Oliveira JL; Abbasi M; Arrais JP
    Comput Biol Med; 2023 Sep; 164():107285. PubMed ID: 37557054
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CMGN: a conditional molecular generation net to design target-specific molecules with desired properties.
    Yang M; Sun H; Liu X; Xue X; Deng Y; Wang X
    Brief Bioinform; 2023 Jul; 24(4):. PubMed ID: 37193672
    [TBL] [Abstract][Full Text] [Related]  

  • 7. De novo drug design as GPT language modeling: large chemistry models with supervised and reinforcement learning.
    Ye G
    J Comput Aided Mol Des; 2024 Apr; 38(1):20. PubMed ID: 38647700
    [TBL] [Abstract][Full Text] [Related]  

  • 8. HELM-GPT: de novo macrocyclic peptide design using generative pre-trained transformer.
    Xu X; Xu C; He W; Wei L; Li H; Zhou J; Zhang R; Wang Y; Xiong Y; Gao X
    Bioinformatics; 2024 Jun; 40(6):. PubMed ID: 38867692
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of reinforcement learning in transformer-based molecular design.
    He J; Tibo A; Janet JP; Nittinger E; Tyrchan C; Czechtizky W; Engkvist O
    J Cheminform; 2024 Aug; 16(1):95. PubMed ID: 39118113
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep Convolutional Generative Adversarial Network (dcGAN) Models for Screening and Design of Small Molecules Targeting Cannabinoid Receptors.
    Bian Y; Wang J; Jun JJ; Xie XQ
    Mol Pharm; 2019 Nov; 16(11):4451-4460. PubMed ID: 31589460
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fine-tuning of a generative neural network for designing multi-target compounds.
    Blaschke T; Bajorath J
    J Comput Aided Mol Des; 2022 May; 36(5):363-371. PubMed ID: 34046745
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Llamol: a dynamic multi-conditional generative transformer for de novo molecular design.
    Dobberstein N; Maass A; Hamaekers J
    J Cheminform; 2024 Jun; 16(1):73. PubMed ID: 38907298
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Target-specific novel molecules with their recipe: Incorporating synthesizability in the design process.
    Krishnan SR; Bung N; Srinivasan R; Roy A
    J Mol Graph Model; 2024 Jun; 129():108734. PubMed ID: 38442440
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Generative artificial intelligence for small molecule drug design.
    Kanakala GC; Devata S; Chatterjee P; Priyakumar UD
    Curr Opin Biotechnol; 2024 Oct; 89():103175. PubMed ID: 39106790
    [TBL] [Abstract][Full Text] [Related]  

  • 15. BonMOLière: Small-Sized Libraries of Readily Purchasable Compounds, Optimized to Produce Genuine Hits in Biological Screens across the Protein Space.
    Mathai N; Stork C; Kirchmair J
    Int J Mol Sci; 2021 Jul; 22(15):. PubMed ID: 34360558
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MolGPT: Molecular Generation Using a Transformer-Decoder Model.
    Bagal V; Aggarwal R; Vinod PK; Priyakumar UD
    J Chem Inf Model; 2022 May; 62(9):2064-2076. PubMed ID: 34694798
    [TBL] [Abstract][Full Text] [Related]  

  • 17. GraphGPT: A Graph Enhanced Generative Pretrained Transformer for Conditioned Molecular Generation.
    Lu H; Wei Z; Wang X; Zhang K; Liu H
    Int J Mol Sci; 2023 Nov; 24(23):. PubMed ID: 38069085
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-content image generation for drug discovery using generative adversarial networks.
    Hussain S; Anees A; Das A; Nguyen BP; Marzuki M; Lin S; Wright G; Singhal A
    Neural Netw; 2020 Dec; 132():353-363. PubMed ID: 32977280
    [TBL] [Abstract][Full Text] [Related]  

  • 19. De novo generation of dual-target ligands using adversarial training and reinforcement learning.
    Lu F; Li M; Min X; Li C; Zeng X
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34410338
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Developing a Generative Model Utilizing Self-attention Networks: Application to Materials/Drug Discovery.
    Kondo M
    Mol Inform; 2021 Oct; 40(10):e2100102. PubMed ID: 34432953
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.