BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 38928633)

  • 1. Segmentation and Multi-Timepoint Tracking of 3D Cancer Organoids from Optical Coherence Tomography Images Using Deep Neural Networks.
    Branciforti F; Salvi M; D'Agostino F; Marzola F; Cornacchia S; De Titta MO; Mastronuzzi G; Meloni I; Moschetta M; Porciani N; Sciscenti F; Spertini A; Spilla A; Zagaria I; Deloria AJ; Deng S; Haindl R; Szakacs G; Csiszar A; Liu M; Drexler W; Molinari F; Meiburger KM
    Diagnostics (Basel); 2024 Jun; 14(12):. PubMed ID: 38928633
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automated detection and growth tracking of 3D bio-printed organoid clusters using optical coherence tomography with deep convolutional neural networks.
    Bao D; Wang L; Zhou X; Yang S; He K; Xu M
    Front Bioeng Biotechnol; 2023; 11():1133090. PubMed ID: 37122853
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Volumetric growth tracking of patient-derived cancer organoids using optical coherence tomography.
    Gil DA; Deming DA; Skala MC
    Biomed Opt Express; 2021 Jul; 12(7):3789-3805. PubMed ID: 34457380
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep learning based characterization of human organoids using optical coherence tomography.
    Wang B; Ganjee R; Khandaker I; Flohr K; He Y; Li G; Wesalo J; Sahel JA; da Silva S; Pi S
    Biomed Opt Express; 2024 May; 15(5):3112-3127. PubMed ID: 38855657
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A deep learning model for detection and tracking in high-throughput images of organoid.
    Bian X; Li G; Wang C; Liu W; Lin X; Chen Z; Cheung M; Luo X
    Comput Biol Med; 2021 Jul; 134():104490. PubMed ID: 34102401
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantifying the drug response of patient-derived organoid clusters by aggregated morphological indicators with multi-parameters based on optical coherence tomography.
    Zhang L; Wang L; Yang S; He K; Bao D; Xu M
    Biomed Opt Express; 2023 Apr; 14(4):1703-1717. PubMed ID: 37078050
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Segmentation of retinal fluid based on deep learning: application of three-dimensional fully convolutional neural networks in optical coherence tomography images.
    Li MX; Yu SQ; Zhang W; Zhou H; Xu X; Qian TW; Wan YJ
    Int J Ophthalmol; 2019; 12(6):1012-1020. PubMed ID: 31236362
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-throughput deconvolution of 3D organoid dynamics at cellular resolution for cancer pharmacology with Cellos.
    Mukashyaka P; Kumar P; Mellert DJ; Nicholas S; Noorbakhsh J; Brugiolo M; Courtois ET; Anczukow O; Liu ET; Chuang JH
    Nat Commun; 2023 Dec; 14(1):8406. PubMed ID: 38114489
    [TBL] [Abstract][Full Text] [Related]  

  • 9.
    Mukashyaka P; Kumar P; Mellert DJ; Nicholas S; Noorbakhsh J; Brugiolo M; Anczukow O; Liu ET; Chuang JH
    bioRxiv; 2023 Mar; ():. PubMed ID: 36945601
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep-learning based multiclass retinal fluid segmentation and detection in optical coherence tomography images using a fully convolutional neural network.
    Lu D; Heisler M; Lee S; Ding GW; Navajas E; Sarunic MV; Beg MF
    Med Image Anal; 2019 May; 54():100-110. PubMed ID: 30856455
    [TBL] [Abstract][Full Text] [Related]  

  • 11. OrBITS: label-free and time-lapse monitoring of patient derived organoids for advanced drug screening.
    Deben C; De La Hoz EC; Compte ML; Van Schil P; Hendriks JMH; Lauwers P; Yogeswaran SK; Lardon F; Pauwels P; Van Laere S; Bogaerts A; Smits E; Vanlanduit S; Lin A
    Cell Oncol (Dordr); 2023 Apr; 46(2):299-314. PubMed ID: 36508089
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel deep learning segmentation model for organoid-based drug screening.
    Wang X; Wu C; Zhang S; Yu P; Li L; Guo C; Li R
    Front Pharmacol; 2022; 13():1080273. PubMed ID: 36588731
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep-learning approach for automated thickness measurement of epithelial tissue and scab using optical coherence tomography.
    Ji Y; Yang S; Zhou K; Rocliffe HR; Pellicoro A; Cash JL; Wang R; Li C; Huang Z
    J Biomed Opt; 2022 Jan; 27(1):. PubMed ID: 35043611
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent Advanced Deep Learning Architectures for Retinal Fluid Segmentation on Optical Coherence Tomography Images.
    Lin M; Bao G; Sang X; Wu Y
    Sensors (Basel); 2022 Apr; 22(8):. PubMed ID: 35459040
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultra-High-Resolution 3D Optical Coherence Tomography Reveals Inner Structures of Human Placenta-Derived Trophoblast Organoids.
    Deloria AJ; Haider S; Dietrich B; Kunihs V; Oberhofer S; Knofler M; Leitgeb R; Liu M; Drexler W; Haindl R
    IEEE Trans Biomed Eng; 2021 Aug; 68(8):2368-2376. PubMed ID: 33201804
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Segmentation of paracentral acute middle maculopathy lesions in spectral-domain optical coherence tomography images through weakly supervised deep convolutional networks.
    Zhang T; Wei Q; Li Z; Meng W; Zhang M; Zhang Z
    Comput Methods Programs Biomed; 2023 Oct; 240():107632. PubMed ID: 37329802
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep Learning Model for Predicting Airway Organoid Differentiation.
    Lim MH; Shin S; Park K; Park J; Kim SW; Basurrah MA; Lee S; Kim DH
    Tissue Eng Regen Med; 2023 Dec; 20(7):1109-1117. PubMed ID: 37594633
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep learning segmentation of fibrous cap in intravascular optical coherence tomography images.
    Lee J; Kim JN; Dallan LAP; Zimin VN; Hoori A; Hassani NS; Makhlouf MHE; Guagliumi G; Bezerra HG; Wilson DL
    Sci Rep; 2024 Feb; 14(1):4393. PubMed ID: 38388637
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Perspective: Extending the Utility of Three-Dimensional Organoids by Tissue Clearing Technologies.
    Susaki EA; Takasato M
    Front Cell Dev Biol; 2021; 9():679226. PubMed ID: 34195197
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Longitudinal morphological and functional characterization of human heart organoids using optical coherence tomography.
    Ming Y; Hao S; Wang F; Lewis-Israeli YR; Volmert BD; Xu Z; Goestenkors A; Aguirre A; Zhou C
    Biosens Bioelectron; 2022 Jul; 207():114136. PubMed ID: 35325716
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.