These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 38929505)

  • 1. Role of Histone Modifications in Kidney Fibrosis.
    Pan S; Yuan T; Xia Y; Yu W; Zhou X; Cheng F
    Medicina (Kaunas); 2024 May; 60(6):. PubMed ID: 38929505
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Role of Histone Modifications in Acute Kidney Injury Progressing to Chronic Kidney Disease].
    Guo S; Zhang Z; Zhao J; Yuan J; Sun S
    Sichuan Da Xue Xue Bao Yi Xue Ban; 2023 Nov; 54(6):1080-1084. PubMed ID: 38162077
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Epigenetic Modification Mechanisms Involved in Inflammation and Fibrosis in Renal Pathology.
    Morgado-Pascual JL; Marchant V; Rodrigues-Diez R; Dolade N; Suarez-Alvarez B; Kerr B; Valdivielso JM; Ruiz-Ortega M; Rayego-Mateos S
    Mediators Inflamm; 2018; 2018():2931049. PubMed ID: 30647531
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A systematic review of epigenetic interplay in kidney diseases: Crosstalk between long noncoding RNAs and methylation, acetylation of chromatin and histone.
    Tan RZ; Jia J; Li T; Wang L; Kantawong F
    Biomed Pharmacother; 2024 Jul; 176():116922. PubMed ID: 38870627
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Histone Modifications in Aging: The Underlying Mechanisms and Implications.
    Wang Y; Yuan Q; Xie L
    Curr Stem Cell Res Ther; 2018; 13(2):125-135. PubMed ID: 28820059
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Klotho recovery by genistein via promoter histone acetylation and DNA demethylation mitigates renal fibrosis in mice.
    Li Y; Chen F; Wei A; Bi F; Zhu X; Yin S; Lin W; Cao W
    J Mol Med (Berl); 2019 Apr; 97(4):541-552. PubMed ID: 30806715
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Role of Histone Modifications in the Pathogenesis of Diabetic Kidney Disease.
    Kourtidou C; Tziomalos K
    Int J Mol Sci; 2023 Mar; 24(6):. PubMed ID: 36983082
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targeting epigenetic DNA and histone modifications to treat kidney disease.
    Fontecha-Barriuso M; Martin-Sanchez D; Ruiz-Andres O; Poveda J; Sanchez-Niño MD; Valiño-Rivas L; Ruiz-Ortega M; Ortiz A; Sanz AB
    Nephrol Dial Transplant; 2018 Nov; 33(11):1875-1886. PubMed ID: 29534238
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targeting Histone Onco- Modifications Using Plant-Derived Products.
    Illam SP; Kandiyil SP; Raghavamenon AC
    Curr Drug Targets; 2021; 22(11):1317-1331. PubMed ID: 33461463
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Epigenetics of kidney disease.
    Wanner N; Bechtel-Walz W
    Cell Tissue Res; 2017 Jul; 369(1):75-92. PubMed ID: 28286899
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Epigenetic targeting for acute kidney injury.
    Zhuang S
    Nephrology (Carlton); 2018 Oct; 23 Suppl 4():21-25. PubMed ID: 30298650
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Role of Histone Acetylation-/Methylation-Mediated Apoptotic Gene Regulation in Hepatocellular Carcinoma.
    Rajan PK; Udoh UA; Sanabria JD; Banerjee M; Smith G; Schade MS; Sanabria J; Sodhi K; Pierre S; Xie Z; Shapiro JI; Sanabria J
    Int J Mol Sci; 2020 Nov; 21(23):. PubMed ID: 33255318
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cell‑specific histone modifications in atherosclerosis (Review).
    Jiang W; Agrawal DK; Boosani CS
    Mol Med Rep; 2018 Aug; 18(2):1215-1224. PubMed ID: 29901135
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Profiling histone modifications in the normal mouse kidney and after unilateral ureteric obstruction.
    Hewitson TD; Holt SG; Samuel CS; Wigg B; Smith ER
    Am J Physiol Renal Physiol; 2019 Sep; 317(3):F606-F615. PubMed ID: 31268352
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Klotho restoration via acetylation of Peroxisome Proliferation-Activated Receptor γ reduces the progression of chronic kidney disease.
    Lin W; Zhang Q; Liu L; Yin S; Liu Z; Cao W
    Kidney Int; 2017 Sep; 92(3):669-679. PubMed ID: 28416226
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The landscape of histone modification in organ fibrosis.
    You JB; Cao Y; You QY; Liu ZY; Wang XC; Ling H; Sha JM; Tao H
    Eur J Pharmacol; 2024 Aug; 977():176748. PubMed ID: 38897443
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative Analysis of Posttranslational Modifications of Plant Histones.
    Kuchaříková H; Plšková Z; Zdráhal Z; Fojtová M; Kerchev P; Lochmanová G
    Methods Mol Biol; 2022; 2526():241-257. PubMed ID: 35657525
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chatting histone modifications in mammals.
    Izzo A; Schneider R
    Brief Funct Genomics; 2010 Dec; 9(5-6):429-43. PubMed ID: 21266346
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fng1 is involved in crosstalk between histone acetylation and methylation.
    Ye M; Jiang H; Fu X; Xu JR; Jiang C
    Curr Genet; 2021 Aug; 67(4):535-538. PubMed ID: 33641041
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel histone post-translational modifications in diabetes and complications of diabetes: The underlying mechanisms and implications.
    Li D; Zhang L; He Y; Zhou T; Cheng X; Huang W; Xu Y
    Biomed Pharmacother; 2022 Dec; 156():113984. PubMed ID: 36411669
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.