These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 38930204)

  • 1. Ferroelectric Material in Triboelectric Nanogenerator.
    Zhang Z; Wu T; Sun E; Chen Y; Wang N
    Materials (Basel); 2024 Jun; 17(12):. PubMed ID: 38930204
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Magnetic Material in Triboelectric Nanogenerators: A Review.
    Sun E; Zhu Q; Rehman HU; Wu T; Cao X; Wang N
    Nanomaterials (Basel); 2024 May; 14(10):. PubMed ID: 38786783
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Achieving ultrahigh triboelectric charge density for efficient energy harvesting.
    Wang J; Wu C; Dai Y; Zhao Z; Wang A; Zhang T; Wang ZL
    Nat Commun; 2017 Jul; 8(1):88. PubMed ID: 28729530
    [TBL] [Abstract][Full Text] [Related]  

  • 4. From Triboelectric Nanogenerator to Multifunctional Triboelectric Sensors: A Chemical Perspective toward the Interface Optimization and Device Integration.
    Xiang H; Zeng Y; Huang X; Wang N; Cao X; Wang ZL
    Small; 2022 Oct; 18(43):e2107222. PubMed ID: 36123149
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural and Chemical Modifications Towards High-Performance of Triboelectric Nanogenerators.
    Nurmakanov Y; Kalimuldina G; Nauryzbayev G; Adair D; Bakenov Z
    Nanoscale Res Lett; 2021 Jul; 16(1):122. PubMed ID: 34328566
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application, challenge and perspective of triboelectric nanogenerator as micro-nano energy and self-powered biosystem.
    Shen J; Li B; Yang Y; Yang Z; Liu X; Lim KC; Chen J; Ji L; Lin ZH; Cheng J
    Biosens Bioelectron; 2022 Nov; 216():114595. PubMed ID: 35973278
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Review of Recent Advances in Human-Motion Energy Harvesting Nanogenerators, Self-Powering Smart Sensors and Self-Charging Electronics.
    Gołąbek J; Strankowski M
    Sensors (Basel); 2024 Feb; 24(4):. PubMed ID: 38400228
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flexible Nanogenerators for Energy Harvesting and Self-Powered Electronics.
    Fan FR; Tang W; Wang ZL
    Adv Mater; 2016 Jun; 28(22):4283-305. PubMed ID: 26748684
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Textile-Based Triboelectric Nanogenerators for Wearable Self-Powered Microsystems.
    Huang P; Wen DL; Qiu Y; Yang MH; Tu C; Zhong HS; Zhang XS
    Micromachines (Basel); 2021 Feb; 12(2):. PubMed ID: 33562717
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advanced Dielectric Materials for Triboelectric Nanogenerators: Principles, Methods, and Applications.
    Li Y; Luo Y; Deng H; Shi S; Tian S; Wu H; Tang J; Zhang C; Zhang X; Zha JW; Xiao S
    Adv Mater; 2024 Mar; ():e2314380. PubMed ID: 38517171
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Remarkable Output Power Density Enhancement of Triboelectric Nanogenerators via Polarized Ferroelectric Polymers and Bulk MoS
    Kim M; Park D; Alam MM; Lee S; Park P; Nah J
    ACS Nano; 2019 Apr; 13(4):4640-4646. PubMed ID: 30875188
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Paper-based triboelectric nanogenerators and their applications: a review.
    Han J; Xu N; Liang Y; Ding M; Zhai J; Sun Q; Wang ZL
    Beilstein J Nanotechnol; 2021; 12():151-171. PubMed ID: 33614382
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polysaccharide-based triboelectric nanogenerators: A review.
    Torres FG; De-la-Torre GE
    Carbohydr Polym; 2021 Jan; 251():117055. PubMed ID: 33142607
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Leverage Surface Chemistry for High-Performance Triboelectric Nanogenerators.
    Xu J; Zou Y; Nashalian A; Chen J
    Front Chem; 2020; 8():577327. PubMed ID: 33330365
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Eco-friendly, compact, and cost-efficient triboelectric nanogenerator for renewable energy harvesting and smart motion sensing.
    Delgado-Alvarado E; Martínez-Castillo J; Morales-González EA; González-Calderón JA; Armendáriz-Alonso EF; Rodríguez-Liñán GM; López-Esparza R; Hernández-Hernández J; Elvira-Hernández EA; Herrera-May AL
    Heliyon; 2024 Apr; 10(7):e28482. PubMed ID: 38601514
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Toward a New Era of Sustainable Energy: Advanced Triboelectric Nanogenerator for Harvesting High Entropy Energy.
    Chen B; Wang ZL
    Small; 2022 Oct; 18(43):e2107034. PubMed ID: 35332687
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic Thermostable Cellulosic Triboelectric Materials from Multilevel-Non-Covalent Interactions.
    Wang J; Liu Y; Liu T; Zhang S; Wei Z; Luo B; Cai C; Chi M; Wang S; Nie S
    Small; 2024 Apr; 20(16):e2307504. PubMed ID: 38018269
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrical performance enhancement of a triboelectric nanogenerator based on epoxy resin/BaTiO
    Amorntep N; Namvong A; Wongsinlatam W; Remsungnen T; Siritaratiwat A; Srichan C; Sriphan S; Pakawanit P; Ariyarit A; Supasai W; Jutong N; Narkglom S; Surawanitkun C
    Nanotechnology; 2023 Jul; 34(42):. PubMed ID: 37526494
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Boosted output performance of nanocellulose-based triboelectric nanogenerators via device engineering and surface functionalization.
    Vatankhah E; Tadayon M; Ramakrishna S
    Carbohydr Polym; 2021 Aug; 266():118120. PubMed ID: 34044936
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Trap Distribution and Conductivity Synergic Optimization of High-Performance Triboelectric Nanogenerators for Self-Powered Devices.
    Lv S; Zhang X; Huang T; Yu H; Zhang Q; Zhu M
    ACS Appl Mater Interfaces; 2021 Jan; 13(2):2566-2575. PubMed ID: 33411491
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.