These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 38930213)

  • 1. Polyurethane Composites Recycling with Styrene-Acrylonitrile and Calcium Carbonate Recovery.
    Del Amo J; Iswar S; Vanbergen T; Borreguero AM; De Vos SDE; Verlent I; Willems J; Rodriguez Romero JF
    Materials (Basel); 2024 Jun; 17(12):. PubMed ID: 38930213
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glycolysis of Polyurethanes Composites Containing Nanosilica.
    Del Amo J; Borreguero AM; Ramos MJ; Rodríguez JF
    Polymers (Basel); 2021 Apr; 13(9):. PubMed ID: 33925763
    [TBL] [Abstract][Full Text] [Related]  

  • 3. From Bioresources to Thermal Insulation Materials: Synthesis and Properties of Two-Component Open-Cell Spray Polyurethane Foams Based on Bio-Polyols from Used Cooking Oil.
    Polaczek K; Kurańska M; Malewska E; Czerwicka-Pach M; Prociak A
    Materials (Basel); 2023 Sep; 16(18):. PubMed ID: 37763416
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of New Eco-Polyols Based on PLA Waste on the Basic Properties of Rigid Polyurethane and Polyurethane/Polyisocyanurate Foams.
    Borowicz M; Isbrandt M; Paciorek-Sadowska J
    Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445688
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemically Functionalized Cellulose Nanocrystals as Reactive Filler in Bio-Based Polyurethane Foams.
    Coccia F; Gryshchuk L; Moimare P; Bossa FL; Santillo C; Barak-Kulbak E; Verdolotti L; Boggioni L; Lama GC
    Polymers (Basel); 2021 Jul; 13(15):. PubMed ID: 34372159
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polyols and Polyurethane Foams Obtained from Mixture of Metasilicic Acid and Cellulose.
    Lubczak J; Lubczak R; Chmiel-Bator E; Szpiłyk M
    Polymers (Basel); 2022 Sep; 14(19):. PubMed ID: 36235991
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recovery of Green Polyols from Rigid Polyurethane Waste by Catalytic Depolymerization.
    Miguel-Fernández R; Amundarain I; Asueta A; García-Fernández S; Arnaiz S; Miazza NL; Montón E; Rodríguez-García B; Bianca-Benchea E
    Polymers (Basel); 2022 Jul; 14(14):. PubMed ID: 35890711
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of Rigid Polyurethane Foams Incorporating Polyols from Chemical Recycling of Post-Industrial Waste Polyurethane Foams.
    Amundarain I; Miguel-Fernández R; Asueta A; García-Fernández S; Arnaiz S
    Polymers (Basel); 2022 Mar; 14(6):. PubMed ID: 35335488
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vegetable Fillers and Rapeseed Oil-Based Polyol as Natural Raw Materials for the Production of Rigid Polyurethane Foams.
    Leszczyńska M; Malewska E; Ryszkowska J; Kurańska M; Gloc M; Leszczyński MK; Prociak A
    Materials (Basel); 2021 Apr; 14(7):. PubMed ID: 33916735
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polyols and Polyurethane Foams Based on Water-Soluble Chitosan.
    Strzałka AM; Lubczak J
    Polymers (Basel); 2023 Mar; 15(6):. PubMed ID: 36987267
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rigid Polyurethane Foams with Various Isocyanate Indices Based on Polyols from Rapeseed Oil and Waste PET.
    Ivdre A; Abolins A; Sevastyanova I; Kirpluks M; Cabulis U; Merijs-Meri R
    Polymers (Basel); 2020 Mar; 12(4):. PubMed ID: 32224860
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flexible Polyurethane Foams from Epoxidized Vegetable Oils and a Bio-Based Diisocyanate.
    Cifarelli A; Boggioni L; Vignali A; Tritto I; Bertini F; Losio S
    Polymers (Basel); 2021 Feb; 13(4):. PubMed ID: 33670627
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chitosan Oligomer as a Raw Material for Obtaining Polyurethane Foams.
    Strzałka A; Lubczak R; Lubczak J
    Polymers (Basel); 2023 Jul; 15(14):. PubMed ID: 37514473
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Upgrading Sustainable Polyurethane Foam Based on Greener Polyols: Succinic-Based Polyol and Mannich-Based Polyol.
    de Luca Bossa F; Verdolotti L; Russo V; Campaner P; Minigher A; Lama GC; Boggioni L; Tesser R; Lavorgna M
    Materials (Basel); 2020 Jul; 13(14):. PubMed ID: 32708562
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of Selected Bio-Components on the Cell Structure and Properties of Rigid Polyurethane Foams.
    Prociak A; Kucała M; Kurańska M; Barczewski M
    Polymers (Basel); 2023 Sep; 15(18):. PubMed ID: 37765513
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recovery of Flexible Polyurethane Foam Waste for Efficient Reuse in Industrial Formulations.
    Kiss G; Rusu G; Peter F; Tănase I; Bandur G
    Polymers (Basel); 2020 Jul; 12(7):. PubMed ID: 32664336
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Water-Induced Self-Blown Non-Isocyanate Polyurethane Foams.
    Bourguignon M; Grignard B; Detrembleur C
    Angew Chem Int Ed Engl; 2022 Dec; 61(51):e202213422. PubMed ID: 36278827
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Advances in Low-Density Flexible Polyurethane Foams by Optimized Incorporation of High Amount of Recycled Polyol.
    Kiss G; Rusu G; Bandur G; Hulka I; Romecki D; Péter F
    Polymers (Basel); 2021 May; 13(11):. PubMed ID: 34073296
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A case for closed-loop recycling of post-consumer PET for automotive foams.
    Bedell M; Brown M; Kiziltas A; Mielewski D; Mukerjee S; Tabor R
    Waste Manag; 2018 Jan; 71():97-108. PubMed ID: 29113836
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Life Cycle Assessment of Polyurethane Foams from Polyols Obtained through Chemical Recycling.
    Marson A; Masiero M; Modesti M; Scipioni A; Manzardo A
    ACS Omega; 2021 Jan; 6(2):1718-1724. PubMed ID: 33490830
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.