These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 38930288)
21. Dioxins control as co-processing water-washed municipal solid waste incineration fly ash in iron ore sintering process. Ji Z; Huang B; Gan M; Fan X; Wang G; Zhao Q; Xing J; Yuan R J Hazard Mater; 2022 Feb; 423(Pt B):127138. PubMed ID: 34537647 [TBL] [Abstract][Full Text] [Related]
22. Emission characteristics of dioxins during iron ore Co-sintering with municipal solid waste incinerator fly ash in a sintering pot. He H; Lu S; Peng Y; Tang M; Zhan M; Lu S; Xu L; Zhong W; Xu L Chemosphere; 2022 Jan; 287(Pt 1):131884. PubMed ID: 34474380 [TBL] [Abstract][Full Text] [Related]
23. Preparation and Crystallization of Magnetic Glass-Ceramics from the Residues after Sulfur Release and Iron Recovery from Copper Ore Tailings with Varied CaO Content. Luo B; Peng T; Sun H; Hui T ChemistryOpen; 2021 Oct; 10(10):986-996. PubMed ID: 34608766 [TBL] [Abstract][Full Text] [Related]
24. Influence of iron ore properties on dioxin emissions during iron ore sintering. Zhou X; Strezov V; Evans T; Salian K; Taylor MP Sci Rep; 2022 Dec; 12(1):21080. PubMed ID: 36473951 [TBL] [Abstract][Full Text] [Related]
25. Studies into the formation of PBDEs and PBDD/Fs in the iron ore sintering process. Drage DS; Aries E; Harrad S Sci Total Environ; 2014 Jul; 485-486():497-507. PubMed ID: 24742560 [TBL] [Abstract][Full Text] [Related]
26. Determining optimal operation parameters for reducing PCDD/F emissions (I-TEQ values) from the iron ore sintering process by using the Taguchi experimental design. Chen YC; Tsai PJ; Mou JL Environ Sci Technol; 2008 Jul; 42(14):5298-303. PubMed ID: 18754384 [TBL] [Abstract][Full Text] [Related]
27. Upgrading Low-Grade Iron Ore through Gangue Removal by a Combined Alkali Roasting and Hydrothermal Treatment. Mochizuki Y; Tsubouchi N ACS Omega; 2019 Nov; 4(22):19723-19734. PubMed ID: 31788604 [TBL] [Abstract][Full Text] [Related]
28. The ignored emission of volatile organic compounds from iron ore sinter process. Li J; He X; Pei B; Li X; Ying D; Wang Y; Jia J J Environ Sci (China); 2019 Mar; 77():282-290. PubMed ID: 30573092 [TBL] [Abstract][Full Text] [Related]
29. Transport of Pb and Zn by carboxylate complexes in basinal ore fluids and related petroleum-field brines at 100°C: the influence of pH and oxygen fugacity. Giordano TH Geochem Trans; 2002; 3():56. PubMed ID: 35412757 [TBL] [Abstract][Full Text] [Related]
30. A Hybrid Ensemble Model Based on ELM and Improved AdaBoost.RT Algorithm for Predicting the Iron Ore Sintering Characters. Wang SH; Li HF; Zhang YJ; Zou ZS Comput Intell Neurosci; 2019; 2019():4164296. PubMed ID: 30800158 [TBL] [Abstract][Full Text] [Related]
31. Fabrication and Microstructure of ZnO/HA Composite with In Situ Formation of Second-Phase ZnO. Yuan S; Ma Y; Li X; Ma Z; Yang H; Mu L Materials (Basel); 2020 Sep; 13(18):. PubMed ID: 32906641 [TBL] [Abstract][Full Text] [Related]
32. Enhanced photocatalytic activity and stability of alumina supported hematite for azo-dye degradation in aerated aqueous suspension. Li Z; Sheng J; Wang Y; Xu Y J Hazard Mater; 2013 Jun; 254-255():18-25. PubMed ID: 23583945 [TBL] [Abstract][Full Text] [Related]
33. Reducing PAH emissions from the iron ore sintering process by optimizing its operation parameters. Chen YC; Tsai PJ; Mou JL Environ Sci Technol; 2009 Jun; 43(12):4459-65. PubMed ID: 19603662 [TBL] [Abstract][Full Text] [Related]
34. The mechanism of NO Han S; Shao R; Wang L; Zhang X; Xuan C; Cheng X; Wang Z RSC Adv; 2024 Apr; 14(16):11007-11016. PubMed ID: 38586448 [TBL] [Abstract][Full Text] [Related]
35. Formation of zinc sulfide species during roasting of ZnO with pyrite and its contribution on flotation. Zheng YX; Lv JF; Wang H; Wen SM; Pang J Sci Rep; 2018 May; 8(1):7839. PubMed ID: 29777146 [TBL] [Abstract][Full Text] [Related]
36. Kinetics and mechanisms for reactions of Fe(II) with iron(III) oxides. Jeon BH; Dempsey BA; Burgos WD Environ Sci Technol; 2003 Aug; 37(15):3309-15. PubMed ID: 12966975 [TBL] [Abstract][Full Text] [Related]
37. Synthesis and Sintering Reaction Mechanism of High-Performance MgO-CaO-Fe Gao Y; Wang J; Tian X; Yang Y; Hou X Materials (Basel); 2023 Mar; 16(5):. PubMed ID: 36903200 [TBL] [Abstract][Full Text] [Related]
38. Synergistic effect of iron and copper oxides on the formation of persistent chlorinated aromatics in iron ore sintering based on in situ XPS analysis. Liu L; Li W; Xiong Z; Xia D; Yang C; Wang W; Sun Y J Hazard Mater; 2019 Mar; 366():202-209. PubMed ID: 30528590 [TBL] [Abstract][Full Text] [Related]
39. Reaction behavior of SO2 in the sintering process with flue gas recirculation. Yu ZY; Fan XH; Gan M; Chen XL; Chen Q; Huang YS J Air Waste Manag Assoc; 2016 Jul; 66(7):687-97. PubMed ID: 27043363 [TBL] [Abstract][Full Text] [Related]