These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 38930377)

  • 1. Effects of the Space Holder Shape on the Pore Structure and Mechanical Properties of Porous Cu with a Wide Porosity Range.
    Xiao J; He Y; Ma W; Yue Y; Qiu G
    Materials (Basel); 2024 Jun; 17(12):. PubMed ID: 38930377
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Manufacturing of graded titanium scaffolds using a novel space holder technique.
    Chen Y; Kent D; Bermingham M; Dehghan-Manshadi A; Wang G; Wen C; Dargusch M
    Bioact Mater; 2017 Dec; 2(4):248-252. PubMed ID: 29744433
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Compressive Properties and Energy Absorption Behavior of 316L Steel Foam Prepared by Space Holder Technique.
    Hu G; Xu G; Gao Q; Feng Z; Huang P; Zu G
    Materials (Basel); 2023 Feb; 16(4):. PubMed ID: 36837050
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of pore size and porosity on mechanical properties and biological response of porous titanium scaffolds.
    Torres-Sanchez C; Al Mushref FRA; Norrito M; Yendall K; Liu Y; Conway PP
    Mater Sci Eng C Mater Biol Appl; 2017 Aug; 77():219-228. PubMed ID: 28532024
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of Mg Powder's Particle Size on Structure and Mechanical Properties of Ti Foam Synthesized by Space Holder Technique.
    Luo H; Zhao J; Du H; Yin W; Qu Y
    Materials (Basel); 2022 Dec; 15(24):. PubMed ID: 36556668
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of porous titanium for biomedical applications: A comparison between loose sintering and space-holder techniques.
    Torres Y; Lascano S; Bris J; Pavón J; Rodriguez JA
    Mater Sci Eng C Mater Biol Appl; 2014 Apr; 37():148-55. PubMed ID: 24582234
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Porous titanium manufactured by a novel powder tapping method using spherical salt bead space holders: Characterisation and mechanical properties.
    Jia J; Siddiq AR; Kennedy AR
    J Mech Behav Biomed Mater; 2015 Aug; 48():229-240. PubMed ID: 25957839
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation and mechanical properties analysis of porous structure for bone tissue engineering.
    Cui J; Yi Y; Zhang J; Chai L; Jin H
    Biomed Mater Eng; 2022; 33(6):465-476. PubMed ID: 35662101
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microstructure, mechanical properties and superelasticity of biomedical porous NiTi alloy prepared by microwave sintering.
    Xu JL; Bao LZ; Liu AH; Jin XJ; Tong YX; Luo JM; Zhong ZC; Zheng YF
    Mater Sci Eng C Mater Biol Appl; 2015 Jan; 46():387-93. PubMed ID: 25492002
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fatigue behavior of TiNi foams processed by the magnesium space holder technique.
    Nakaş GI; Dericioglu AF; Bor S
    J Mech Behav Biomed Mater; 2011 Nov; 4(8):2017-23. PubMed ID: 22098901
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis, microstructure and mechanical properties of porous Mg--Zn scaffolds.
    Seyedraoufi ZS; Mirdamadi Sh
    J Mech Behav Biomed Mater; 2013 May; 21():1-8. PubMed ID: 23454363
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Binder Jetting Additive Manufacturing of High Porosity 316L Stainless Steel Metal Foams.
    Meenashisundaram GK; Xu Z; Nai MLS; Lu S; Ten JS; Wei J
    Materials (Basel); 2020 Aug; 13(17):. PubMed ID: 32847089
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microstructural and mechanical characteristics of porous iron prepared by powder metallurgy.
    Capek J; Vojtěch D
    Mater Sci Eng C Mater Biol Appl; 2014 Oct; 43():494-501. PubMed ID: 25175241
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanical properties of open-pore titanium foam.
    Imwinkelried T
    J Biomed Mater Res A; 2007 Jun; 81(4):964-70. PubMed ID: 17252551
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical properties and electrochemical behavior of porous Ti-Nb biomaterials.
    Yılmaz E; Gökçe A; Findik F; Gulsoy HO; İyibilgin O
    J Mech Behav Biomed Mater; 2018 Nov; 87():59-67. PubMed ID: 30041140
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Titanium-nickel shape memory alloy foams for bone tissue engineering.
    Xiong JY; Li YC; Wang XJ; Hodgson PD; Wen CE
    J Mech Behav Biomed Mater; 2008 Jul; 1(3):269-73. PubMed ID: 19627791
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication and Compressive Properties of Low to Medium Porosity Closed-Cell Porous Aluminum Using PMMA Space Holder Technique.
    Jamal NA; Tan AW; Yusof F; Katsuyoshi K; Hisashi I; Singh S; Anuar H
    Materials (Basel); 2016 Mar; 9(4):. PubMed ID: 28773377
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Superelasticity and compression behavior of porous TiNi alloys produced using Mg spacers.
    Aydoğmuş T; Bor S
    J Mech Behav Biomed Mater; 2012 Nov; 15():59-69. PubMed ID: 23032426
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication, morphology and mechanical properties of Ti and metastable Ti-based alloy foams for biomedical applications.
    Rivard J; Brailovski V; Dubinskiy S; Prokoshkin S
    Mater Sci Eng C Mater Biol Appl; 2014 Dec; 45():421-33. PubMed ID: 25491847
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrafine-grained porous titanium and porous titanium/magnesium composites fabricated by space holder-enabled severe plastic deformation.
    Qi Y; Contreras KG; Jung HD; Kim HE; Lapovok R; Estrin Y
    Mater Sci Eng C Mater Biol Appl; 2016 Feb; 59():754-765. PubMed ID: 26652430
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.