These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 38930377)

  • 21. Different models for simulation of mechanical behaviour of porous materials.
    Muñoz S; Castillo SM; Torres Y
    J Mech Behav Biomed Mater; 2018 Apr; 80():88-96. PubMed ID: 29414480
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fabrication of porous-Ti6Al4V alloy by using hot pressing technique and Mg space holder for hard-tissue biomedical applications.
    Aslan N; Aksakal B; Findik F
    J Mater Sci Mater Med; 2021 Jun; 32(7):80. PubMed ID: 34191138
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A comparative study on compressive deformation and corrosion behaviour of heat treated Ti4wt%Al foam of different porosity made of milled and unmilled powders.
    Singh P; Singh IB; Mondal DP
    Mater Sci Eng C Mater Biol Appl; 2019 May; 98():918-929. PubMed ID: 30813099
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fatigue behavior of highly porous titanium produced by powder metallurgy with temporary space holders.
    Özbilen S; Liebert D; Beck T; Bram M
    Mater Sci Eng C Mater Biol Appl; 2016 Mar; 60():446-457. PubMed ID: 26706551
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Computer simulation of the effect of deformation on the morphology and flow properties of porous media.
    Bakhshian S; Sahimi M
    Phys Rev E; 2016 Oct; 94(4-1):042903. PubMed ID: 27841555
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Diametral compression behavior of biomedical titanium scaffolds with open, interconnected pores prepared with the space holder method.
    Arifvianto B; Leeflang MA; Zhou J
    J Mech Behav Biomed Mater; 2017 Apr; 68():144-154. PubMed ID: 28171811
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of Pore Shape on Mechanical Properties of Porous Shape Memory Alloy.
    Liu B; Pan Y
    Micromachines (Basel); 2022 Mar; 13(4):. PubMed ID: 35457871
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Experimental Study on Tensile Properties of a Novel Porous Metal Fiber/Powder Sintered Composite Sheet.
    Zou S; Wan Z; Lu L; Tang Y
    Materials (Basel); 2016 Aug; 9(9):. PubMed ID: 28773833
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Preparing diopside nanoparticle scaffolds via space holder method: Simulation of the compressive strength and porosity.
    Abdellahi M; Najafinezhad A; Ghayour H; Saber-Samandari S; Khandan A
    J Mech Behav Biomed Mater; 2017 Aug; 72():171-181. PubMed ID: 28499165
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Porous vitalium-base nano-composite for bone replacement: Fabrication, mechanical, and in vitro biological properties.
    Dehaghani MT; Ahmadian M
    J Mech Behav Biomed Mater; 2016 Apr; 57():297-309. PubMed ID: 26874088
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of pore size and porosity on cytocompatibility and osteogenic differentiation of porous titanium.
    Yao YT; Yang Y; Ye Q; Cao SS; Zhang XP; Zhao K; Jian Y
    J Mater Sci Mater Med; 2021 Jun; 32(6):72. PubMed ID: 34125310
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mechanical properties and biocompatibility of porous titanium scaffolds for bone tissue engineering.
    Chen Y; Frith JE; Dehghan-Manshadi A; Attar H; Kent D; Soro NDM; Bermingham MJ; Dargusch MS
    J Mech Behav Biomed Mater; 2017 Nov; 75():169-174. PubMed ID: 28734258
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fabrication of Metallic Biomedical Scaffolds with the Space Holder Method: A Review.
    Arifvianto B; Zhou J
    Materials (Basel); 2014 May; 7(5):3588-3622. PubMed ID: 28788638
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Degradation behavior, cytotoxicity, hemolysis, and antibacterial properties of electro-deposited Zn-Cu metal foams as potential biodegradable bone implants.
    Tong X; Shi Z; Xu L; Lin J; Zhang D; Wang K; Li Y; Wen C
    Acta Biomater; 2020 Jan; 102():481-492. PubMed ID: 31740321
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Microstructure and Strengthening Effect of Coated Diamond Particles on the Porous Aluminum Composites.
    Parveez B; Jamal NA; Aabid A; Baig M
    Materials (Basel); 2023 Apr; 16(8):. PubMed ID: 37110076
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Engineered bio-nanocomposite magnesium scaffold for bone tissue regeneration.
    Parai R; Bandyopadhyay-Ghosh S
    J Mech Behav Biomed Mater; 2019 Aug; 96():45-52. PubMed ID: 31029994
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Porous TiNbZr alloy scaffolds for biomedical applications.
    Wang X; Li Y; Xiong J; Hodgson PD; Wen C
    Acta Biomater; 2009 Nov; 5(9):3616-24. PubMed ID: 19505597
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biocompatible porous titanium scaffolds produced using a novel space holder technique.
    Chen Y; Frith JE; Dehghan-Manshadi A; Kent D; Bermingham M; Dargusch M
    J Biomed Mater Res B Appl Biomater; 2018 Nov; 106(8):2796-2806. PubMed ID: 29405558
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Phase composition, microstructure, and mechanical properties of porous Ti-Nb-Zr alloys prepared by a two-step foaming powder metallurgy method.
    Rao X; Chu CL; Zheng YY
    J Mech Behav Biomed Mater; 2014 Jun; 34():27-36. PubMed ID: 24556322
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Shape-memory NiTi foams produced by replication of NaCl space-holders.
    Bansiddhi A; Dunand DC
    Acta Biomater; 2008 Nov; 4(6):1996-2007. PubMed ID: 18678532
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.