BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 38930404)

  • 1. Bond Strength Assessment of Normal Strength Concrete-Ultra-High-Performance Fiber Reinforced Concrete Using Repeated Drop-Weight Impact Test: Experimental and Machine Learning Technique.
    Haruna SI; Ibrahim YE; Hassan IH; Al-Shawafi A; Zhu H
    Materials (Basel); 2024 Jun; 17(12):. PubMed ID: 38930404
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental Study on the Flexural Behavior of Lap-Spliced Ultra-High-Performance Fiber-Reinforced Concrete Beams.
    Bae BI; Choi HK
    Polymers (Basel); 2022 May; 14(11):. PubMed ID: 35683811
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Study of Combined Multi-Point Constraint Multi-Scale Modeling Strategy for Ultra-High-Performance Steel Fiber-Reinforced Concrete Structures.
    Li Z; Peng Z; Teng J
    Materials (Basel); 2020 Nov; 13(23):. PubMed ID: 33255371
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flexural behaviour and evaluation of ultra-high-performance fibre reinforced concrete beams cured at room temperature.
    Huang J; He Z; Khan MBE; Zheng X; Luo Z
    Sci Rep; 2021 Sep; 11(1):19069. PubMed ID: 34561519
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Failure Analysis of Ultra High-Performance Fiber-Reinforced Concrete Structures Enhanced with Nanomaterials by Using a Diffuse Cohesive Interface Approach.
    De Maio U; Fantuzzi N; Greco F; Leonetti L; Pranno A
    Nanomaterials (Basel); 2020 Sep; 10(9):. PubMed ID: 32916919
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Axial Behavior of Reinforced UHPC-NSC Composite Column under Compression.
    Li F; Hexiao Y; Gao H; Deng K; Jiang Y
    Materials (Basel); 2020 Jun; 13(13):. PubMed ID: 32605248
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrical and Self-Sensing Properties of Ultra-High-Performance Fiber-Reinforced Concrete with Carbon Nanotubes.
    You I; Yoo DY; Kim S; Kim MJ; Zi G
    Sensors (Basel); 2017 Oct; 17(11):. PubMed ID: 29109388
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental Investigation of Cohesion between UHPC and NSC Utilising Interface Protrusions.
    Horák P; Pešková Š; Jogl M; Sovják R; Vítek P
    Materials (Basel); 2022 Sep; 15(19):. PubMed ID: 36233877
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of the Mechanical Properties and Crack Expansion Mechanism of Different Content and Shapes of Brass-Coated Steel Fiber-Reinforced Ultra-High-Performance Concrete.
    Jiang Y; Yan Y; Li T; Cao X; Yu L; Qi H
    Materials (Basel); 2023 Mar; 16(6):. PubMed ID: 36984137
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical Modelling of concrete-to-UHPC Bond Strength.
    Valikhani A; Jahromi AJ; Mantawy IM; Azizinamini A
    Materials (Basel); 2020 Mar; 13(6):. PubMed ID: 32197551
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimizing the Mechanical Properties of Ultra-High-Performance Fibre-Reinforced Concrete to Increase Its Resistance to Projectile Impact.
    Mina AL; Trezos KG; Petrou MF
    Materials (Basel); 2021 Sep; 14(17):. PubMed ID: 34501188
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultra-High-Performance Concrete (UHPC): A State-of-the-Art Review.
    Ullah R; Qiang Y; Ahmad J; Vatin NI; El-Shorbagy MA
    Materials (Basel); 2022 Jun; 15(12):. PubMed ID: 35744190
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unboxing machine learning models for concrete strength prediction using XAI.
    Elhishi S; Elashry AM; El-Metwally S
    Sci Rep; 2023 Nov; 13(1):19892. PubMed ID: 37963976
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interfacial Shear Performance of Epoxy Adhesive Joints of Prefabricated Elements Made of Ultra-High-Performance Concrete.
    Yu K; Zhang Z; Zou Y; Jiang J; Zeng X; Tang L
    Polymers (Basel); 2022 Mar; 14(7):. PubMed ID: 35406238
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interpretable Predictive Modelling of Basalt Fiber Reinforced Concrete Splitting Tensile Strength Using Ensemble Machine Learning Methods and SHAP Approach.
    Cakiroglu C; Aydın Y; Bekdaş G; Geem ZW
    Materials (Basel); 2023 Jun; 16(13):. PubMed ID: 37444890
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonlinear Inverse Analysis for Predicting the Tensile Properties of Strain-Softening and Strain-Hardening UHPFRC.
    Guo YQ; Wang JY; Gu JB
    Materials (Basel); 2022 Apr; 15(9):. PubMed ID: 35591400
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Feasibility of Reducing the Fiber Content in Ultra-High-Performance Fiber-Reinforced Concrete under Flexure.
    Park JJ; Yoo DY; Park GJ; Kim SW
    Materials (Basel); 2017 Jan; 10(2):. PubMed ID: 28772477
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of Mining Waste to Produce Ultra-High-Performance Fibre-Reinforced Concrete.
    González JS; Lopez Boadella I; López Gayarre F; López-Colina Pérez C; Serrano López M; Stochino F
    Materials (Basel); 2020 May; 13(11):. PubMed ID: 32481662
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tensile response of Ultra High Performance PE Fiber Reinforced Concretes (PE-UHPFRC) under imposed shrinkage deformations.
    Hajiesmaeili A; Hafiz MA; Denarié E
    Mater Struct; 2021; 54(3):114. PubMed ID: 34720656
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bonding Behaviour of Steel Fibres in UHPFRC Based on Alkali-Activated Slag.
    Wetzel A; Göbel D; Schleiting M; Wiemer N; Middendorf B
    Materials (Basel); 2022 Mar; 15(5):. PubMed ID: 35269161
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.