BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 38930407)

  • 1. Thermodynamic Model for Hydrogen Production from Rice Straw Supercritical Water Gasification.
    Liu Z; Peng Z; Yi L; Wang L; Chen J; Chen B; Guo L
    Materials (Basel); 2024 Jun; 17(12):. PubMed ID: 38930407
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Supercritical water gasification of biomass: Thermodynamic constraints.
    Castello D; Fiori L
    Bioresour Technol; 2011 Aug; 102(16):7574-82. PubMed ID: 21640582
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Catalytic Supercritical Water Gasification of Canola Straw with Promoted and Supported Nickel-Based Catalysts.
    Khandelwal K; Dalai AK
    Molecules; 2024 Feb; 29(4):. PubMed ID: 38398661
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Production of H
    Su H; Kanchanatip E; Wang D; Zheng R; Huang Z; Chen Y; Mubeen I; Yan M
    Waste Manag; 2020 Feb; 102():520-527. PubMed ID: 31765972
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimizing hydrogen gas production from genetically modified rice straw by steam co-gasification.
    Zahra ACA; Okura H; Chaerusani V; Alahakoon AMYW; Rizkiana J; Kang DJ; Abudula A; Guan G
    Waste Manag; 2024 Jul; 184():132-141. PubMed ID: 38815287
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermodynamic modelling of supercritical water gasification: investigating the effect of biomass composition to aid in the selection of appropriate feedstock material.
    Louw J; Schwarz CE; Knoetze JH; Burger AJ
    Bioresour Technol; 2014 Dec; 174():11-23. PubMed ID: 25463777
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gasification of cyanobacterial in supercritical water.
    Zhang H; Zhu W; Xu Z; Gong M
    Environ Technol; 2014; 35(21-24):2788-95. PubMed ID: 25176482
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A two-step process for energy-efficient conversion of food waste via supercritical water gasification: Process design, products analysis, and electricity evaluation.
    Liu J; Wang D; Yu C; Jiang J; Guo M; Hantoko D; Yan M
    Sci Total Environ; 2021 Jan; 752():142331. PubMed ID: 33207504
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An experimental and thermodynamic equilibrium investigation of heavy metals transformation in supercritical water gasification of oily sludge.
    Li L; Li X; Cao W
    J Environ Manage; 2023 Dec; 348():119365. PubMed ID: 37862888
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Supercritical water gasification of hyperaccumulators for hydrogen production and heavy metal immobilization with alkali metal catalysts.
    Su W; Zhao M; Xing Y; Ma H; Liu P; Li X; Zhang H; Wu Y; Xia C
    Environ Res; 2022 Nov; 214(Pt 4):114093. PubMed ID: 35998690
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Supercritical water gasification of biomass for H2 production: process design.
    Fiori L; Valbusa M; Castello D
    Bioresour Technol; 2012 Oct; 121():139-47. PubMed ID: 22858478
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transformation mechanism of polycyclic aromatic hydrocarbons and hydrogen production during the gasification of coking sludge in supercritical water.
    Zhong J; Zhu W; Wang C; Mu B; Lin N; Chen S; Li Z
    Chemosphere; 2022 Aug; 300():134467. PubMed ID: 35378168
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Supercritical water gasification of microalgae over a two-component catalyst mixture.
    Duan PG; Li SC; Jiao JL; Wang F; Xu YP
    Sci Total Environ; 2018 Jul; 630():243-253. PubMed ID: 29477822
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental study on supercritical water gasification of oily sludge using a continuous two-step method.
    Wang G; Li J; Li X; Kou J; Ge Z; Li L; Peng P; Guo L
    J Hazard Mater; 2023 Aug; 455():131619. PubMed ID: 37207484
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formation and inhibition of polycyclic aromatic hydrocarbons from the gasification of cyanobacterial biomass in supercritical water.
    Zhang H; Wang C; Zhang X; Zhang R; Ding L
    Chemosphere; 2020 Aug; 253():126777. PubMed ID: 32464755
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of Individual Gas Yields of Supercritical Water Gasification of Lignocellulosic Biomass by Machine Learning Models.
    Khandelwal K; Dalai AK
    Molecules; 2024 May; 29(10):. PubMed ID: 38792198
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrogen production and heavy metal immobilization using hyperaccumulators in supercritical water gasification.
    Su W; Liu P; Cai C; Ma H; Jiang B; Xing Y; Liang Y; Cai L; Xia C; Le QV; Sonne C; Lam SS
    J Hazard Mater; 2021 Jan; 402():123541. PubMed ID: 32745873
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison study of supercritical water gasification for hydrogen production on a continuous flow versus a batch reactor.
    Li H; Zhang M; Wang H; Han X; Zeng Y; Xu CC
    Bioresour Technol; 2024 Jan; 391(Pt A):129923. PubMed ID: 37898368
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Char derived from sewage sludge of hydrothermal carbonization and supercritical water gasification: Comparison of the properties of two chars.
    Wang C; Zhu W; Fan X
    Waste Manag; 2021 Mar; 123():88-96. PubMed ID: 33571833
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Supercritical water gasification (SCWG) as a potential tool for the valorization of phycoremediation-derived waste algal biomass for biofuel generation.
    Leong YK; Chen WH; Lee DJ; Chang JS
    J Hazard Mater; 2021 Sep; 418():126278. PubMed ID: 34098259
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.