These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 38930623)

  • 1. Sigma Factor Engineering in
    Schlüter L; Busche T; Bondzio L; Hütten A; Niehaus K; Schneiker-Bekel S; Pühler A; Kalinowski J
    Microorganisms; 2024 Jun; 12(6):. PubMed ID: 38930623
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The expression of the acarbose biosynthesis gene cluster in Actinoplanes sp. SE50/110 is dependent on the growth phase.
    Droste J; Ortseifen V; Schaffert L; Persicke M; Schneiker-Bekel S; Pühler A; Kalinowski J
    BMC Genomics; 2020 Nov; 21(1):818. PubMed ID: 33225887
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Essentiality of the Maltase AmlE in Maltose Utilization and Its Transcriptional Regulation by the Repressor AmlR in the Acarbose-Producing Bacterium
    Schaffert L; Schneiker-Bekel S; Dymek S; Droste J; Persicke M; Busche T; Brandt D; Pühler A; Kalinowski J
    Front Microbiol; 2019; 10():2448. PubMed ID: 31736895
    [No Abstract]   [Full Text] [Related]  

  • 4. A maltose-regulated large genomic region is activated by the transcriptional regulator MalT in Actinoplanes sp. SE50/110.
    Droste J; Kulisch M; Wolf T; Schaffert L; Schneiker-Bekel S; Pühler A; Kalinowski J
    Appl Microbiol Biotechnol; 2020 Nov; 104(21):9283-9294. PubMed ID: 32989516
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The MalR type regulator AcrC is a transcriptional repressor of acarbose biosynthetic genes in Actinoplanes sp. SE50/110.
    Wolf T; Droste J; Gren T; Ortseifen V; Schneiker-Bekel S; Zemke T; Pühler A; Kalinowski J
    BMC Genomics; 2017 Jul; 18(1):562. PubMed ID: 28743243
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comprehensive proteome analysis of Actinoplanes sp. SE50/110 highlighting the location of proteins encoded by the acarbose and the pyochelin biosynthesis gene cluster.
    Wendler S; Otto A; Ortseifen V; Bonn F; Neshat A; Schneiker-Bekel S; Walter F; Wolf T; Zemke T; Wehmeier UF; Hecker M; Kalinowski J; Becher D; Pühler A
    J Proteomics; 2015 Jul; 125():1-16. PubMed ID: 25896738
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative RNA-sequencing of the acarbose producer Actinoplanes sp. SE50/110 cultivated in different growth media.
    Schwientek P; Wendler S; Neshat A; Eirich C; Rückert C; Klein A; Wehmeier UF; Kalinowski J; Stoye J; Pühler A
    J Biotechnol; 2013 Aug; 167(2):166-77. PubMed ID: 23142701
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activity of the Streptomyces coelicolor stress-response sigma factor sigmaH is regulated by an anti-sigma factor.
    Sevcikova B; Kormanec J
    FEMS Microbiol Lett; 2002 Apr; 209(2):229-35. PubMed ID: 12007810
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic engineering in Actinoplanes sp. SE50/110 - development of an intergeneric conjugation system for the introduction of actinophage-based integrative vectors.
    Gren T; Ortseifen V; Wibberg D; Schneiker-Bekel S; Bednarz H; Niehaus K; Zemke T; Persicke M; Pühler A; Kalinowski J
    J Biotechnol; 2016 Aug; 232():79-88. PubMed ID: 27181842
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative proteome analysis of Actinoplanes sp. SE50/110 grown with maltose or glucose shows minor differences for acarbose biosynthesis proteins but major differences for saccharide transporters.
    Wendler S; Otto A; Ortseifen V; Bonn F; Neshat A; Schneiker-Bekel S; Wolf T; Zemke T; Wehmeier UF; Hecker M; Kalinowski J; Becher D; Pühler A
    J Proteomics; 2016 Jan; 131():140-148. PubMed ID: 26597626
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The complete genome sequence of the acarbose producer Actinoplanes sp. SE50/110.
    Schwientek P; Szczepanowski R; Rückert C; Kalinowski J; Klein A; Selber K; Wehmeier UF; Stoye J; Pühler A
    BMC Genomics; 2012 Mar; 13():112. PubMed ID: 22443545
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of vector systems and promoters for overexpression of the acarbose biosynthesis gene acbC in Actinoplanes sp. SE50/110.
    Schaffert L; März C; Burkhardt L; Droste J; Brandt D; Busche T; Rosen W; Schneiker-Bekel S; Persicke M; Pühler A; Kalinowski J
    Microb Cell Fact; 2019 Jun; 18(1):114. PubMed ID: 31253141
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving the genome annotation of the acarbose producer Actinoplanes sp. SE50/110 by sequencing enriched 5'-ends of primary transcripts.
    Schwientek P; Neshat A; Kalinowski J; Klein A; Rückert C; Schneiker-Bekel S; Wendler S; Stoye J; Pühler A
    J Biotechnol; 2014 Nov; 190():85-95. PubMed ID: 24642337
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The cytosolic and extracellular proteomes of Actinoplanes sp. SE50/110 led to the identification of gene products involved in acarbose metabolism.
    Wendler S; Hürtgen D; Kalinowski J; Klein A; Niehaus K; Schulte F; Schwientek P; Wehlmann H; Wehmeier UF; Pühler A
    J Biotechnol; 2013 Aug; 167(2):178-89. PubMed ID: 22944206
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reconstruction and in silico analysis of an Actinoplanes sp. SE50/110 genome-scale metabolic model for acarbose production.
    Wang Y; Xu N; Ye C; Liu L; Shi Z; Wu J
    Front Microbiol; 2015; 6():632. PubMed ID: 26161077
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome improvement of the acarbose producer Actinoplanes sp. SE50/110 and annotation refinement based on RNA-seq analysis.
    Wolf T; Schneiker-Bekel S; Neshat A; Ortseifen V; Wibberg D; Zemke T; Pühler A; Kalinowski J
    J Biotechnol; 2017 Jun; 251():112-123. PubMed ID: 28427920
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancement of acarbose production by genetic engineering and fed-batch fermentation strategy in Actinoplanes sp. SIPI12-34.
    Li Z; Yang S; Zhang Z; Wu Y; Tang J; Wang L; Chen S
    Microb Cell Fact; 2022 Nov; 21(1):240. PubMed ID: 36419063
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cascade of sigma factors in streptomycetes: identification of a new extracytoplasmic function sigma factor sigmaJ that is under the control of the stress-response sigma factor sigmaH in Streptomyces coelicolor A3(2).
    Mazurakova V; Sevcikova B; Rezuchova B; Kormanec J
    Arch Microbiol; 2006 Dec; 186(6):435-46. PubMed ID: 16909271
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative functional genomics of the acarbose producers reveals potential targets for metabolic engineering.
    Xie H; Zhao Q; Zhang X; Kang Q; Bai L
    Synth Syst Biotechnol; 2019 Mar; 4(1):49-56. PubMed ID: 30723817
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Absence of the highly expressed small carbohydrate-binding protein Cgt improves the acarbose formation in Actinoplanes sp. SE50/110.
    Schaffert L; Schneiker-Bekel S; Gierhake J; Droste J; Persicke M; Rosen W; Pühler A; Kalinowski J
    Appl Microbiol Biotechnol; 2020 Jun; 104(12):5395-5408. PubMed ID: 32346757
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.