These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 38930648)

  • 21. Application of 3D Printing Technology in Sensor Development for Water Quality Monitoring.
    Sun Y; Li D; Shi Y; Wang Z; Okeke SI; Yang L; Zhang W; Zhang Z; Shi Y; Xiao L
    Sensors (Basel); 2023 Feb; 23(5):. PubMed ID: 36904570
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Selectively Metalizable Stereolithography Resin for Three-Dimensional DC and High-Frequency Electronics via Hybrid Additive Manufacturing.
    Li J; Zhang Y; Wang P; Wang G; Liu Y; Liu Y; Li Q
    ACS Appl Mater Interfaces; 2021 May; 13(19):22891-22901. PubMed ID: 33961395
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Novel Materials for 3D Printing by Photopolymerization.
    Layani M; Wang X; Magdassi S
    Adv Mater; 2018 Oct; 30(41):e1706344. PubMed ID: 29756242
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Additive Manufacturing Applications in Biosensors Technologies.
    Paul AA; Aladese AD; Marks RS
    Biosensors (Basel); 2024 Jan; 14(2):. PubMed ID: 38391979
    [TBL] [Abstract][Full Text] [Related]  

  • 25. 3D Printed Integrated Sensors: From Fabrication to Applications-A Review.
    Hassan MS; Zaman S; Dantzler JZR; Leyva DH; Mahmud MS; Ramirez JM; Gomez SG; Lin Y
    Nanomaterials (Basel); 2023 Dec; 13(24):. PubMed ID: 38133045
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Colloidal oxide nanoparticle inks for micrometer-resolution additive manufacturing of three-dimensional gas sensors.
    Chen H; Min X; Hui Y; Qin W; Zhang B; Yao Y; Xing W; Zhang W; Zhou N
    Mater Horiz; 2022 Feb; 9(2):764-771. PubMed ID: 34889925
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Review of Batteryless Wireless Sensors Using Additively Manufactured Microwave Resonators.
    Memon MU; Lim S
    Sensors (Basel); 2017 Sep; 17(9):. PubMed ID: 28891947
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electrically Conductive Polymers for Additive Manufacturing.
    Yan Y; Han M; Jiang Y; Ng ELL; Zhang Y; Owh C; Song Q; Li P; Loh XJ; Chan BQY; Chan SY
    ACS Appl Mater Interfaces; 2024 Feb; 16(5):5337-5354. PubMed ID: 38284988
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Polymer-Based MEMS Electromagnetic Actuator for Biomedical Application: A Review.
    Yunas J; Mulyanti B; Hamidah I; Mohd Said M; Pawinanto RE; Wan Ali WAF; Subandi A; Hamzah AA; Latif R; Yeop Majlis B
    Polymers (Basel); 2020 May; 12(5):. PubMed ID: 32455993
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fabrication Methods for Microfluidic Devices: An Overview.
    Scott SM; Ali Z
    Micromachines (Basel); 2021 Mar; 12(3):. PubMed ID: 33803689
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Overview of 3D-Printed Silica Glass.
    Zhang H; Huang L; Tan M; Zhao S; Liu H; Lu Z; Li J; Liang Z
    Micromachines (Basel); 2022 Jan; 13(1):. PubMed ID: 35056246
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dynamic phase control with printing and fluidic materials' interaction by inkjet printing an RF sensor directly on a stereolithographic 3D printed microfluidic structure.
    Park E; Lim S
    Lab Chip; 2021 Nov; 21(22):4364-4378. PubMed ID: 34585708
    [TBL] [Abstract][Full Text] [Related]  

  • 33. 3D printed biomedical devices and their applications: A review on state-of-the-art technologies, existing challenges, and future perspectives.
    Mamo HB; Adamiak M; Kunwar A
    J Mech Behav Biomed Mater; 2023 Jul; 143():105930. PubMed ID: 37267735
    [TBL] [Abstract][Full Text] [Related]  

  • 34. 3D printing in biotechnology-An insight into miniaturized and microfluidic systems for applications from cell culture to bioanalytics.
    Heuer C; Preuß JA; Habib T; Enders A; Bahnemann J
    Eng Life Sci; 2022 Dec; 22(12):744-759. PubMed ID: 36514534
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Facile Route for 3D Printing of Transparent PETg-Based Hybrid Biomicrofluidic Devices Promoting Cell Adhesion.
    Mehta V; Vilikkathala Sudhakaran S; Rath SN
    ACS Biomater Sci Eng; 2021 Aug; 7(8):3947-3963. PubMed ID: 34282888
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A Comprehensive Review on the Optical Micro-Electromechanical Sensors for the Biomedical Application.
    Upadhyaya AM; Hasan MK; Abdel-Khalek S; Hassan R; Srivastava MC; Sharan P; Islam S; Saad AME; Vo N
    Front Public Health; 2021; 9():759032. PubMed ID: 34926383
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Addressing Unmet Clinical Needs with 3D Printing Technologies.
    Ghosh U; Ning S; Wang Y; Kong YL
    Adv Healthc Mater; 2018 Sep; 7(17):e1800417. PubMed ID: 30004185
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Three-Dimensionally Printed Micro-electromechanical Switches.
    Lee Y; Han J; Choi B; Yoon J; Park J; Kim Y; Lee J; Kim DH; Kim DM; Lim M; Kang MH; Kim S; Choi SJ
    ACS Appl Mater Interfaces; 2018 May; 10(18):15841-15846. PubMed ID: 29688690
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Additive Manufacturing for Soft Robotics: Design and Fabrication of Airtight, Monolithic Bending PneuNets with Embedded Air Connectors.
    Stano G; Arleo L; Percoco G
    Micromachines (Basel); 2020 May; 11(5):. PubMed ID: 32397442
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Recent Advancements in Liquid Metal Flexible Printed Electronics: Properties, Technologies, and Applications.
    Wang X; Liu J
    Micromachines (Basel); 2016 Nov; 7(12):. PubMed ID: 30404387
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.