These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 38930665)

  • 1. Behind the Non-Uniform Breakup of Bubble Slug in Y-Shaped Microchannel: Dynamics and Mechanisms.
    Huang H; Liu J; Yu J; Pan W; Yan Z; Pan Z
    Micromachines (Basel); 2024 May; 15(6):. PubMed ID: 38930665
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Numerical Study of Bubble Breakup in Fractal Tree-Shaped Microchannels.
    Zhang C; Zhang X; Li Q; Wu L
    Int J Mol Sci; 2019 Nov; 20(21):. PubMed ID: 31694334
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of Microdroplet Breakup Regime in Asymmetric T-Junction Microchannels.
    Cheng WL; Sadr R; Dai J; Han A
    Biomed Microdevices; 2018 Aug; 20(3):72. PubMed ID: 30105562
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamics of bubble breakup at a T junction.
    Lu Y; Fu T; Zhu C; Ma Y; Li HZ
    Phys Rev E; 2016 Feb; 93(2):022802. PubMed ID: 26986389
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of triangular obstacles on droplet breakup dynamics in microfluidic systems.
    Tazikeh Lemeski A; Seyyedi SM; Hashemi-Tilehnoee M; Naeimi AS
    Sci Rep; 2024 Jun; 14(1):13324. PubMed ID: 38858444
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamics of partially obstructed breakup of bubbles in microfluidic Y-junctions.
    Ziyi X; Taotao F; Chunying Z; Shaokun J; Youguang M; Kai W; Guangsheng L
    Electrophoresis; 2019 Feb; 40(3):376-387. PubMed ID: 30188577
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interfacial Area Transport Equation for Bubble Coalescence and Breakup: Developments and Comparisons.
    Chen H; Wei S; Ding W; Wei H; Li L; Saxén H; Long H; Yu Y
    Entropy (Basel); 2021 Aug; 23(9):. PubMed ID: 34573731
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Breakup of bubbles and drops in steadily sheared foams and concentrated emulsions.
    Golemanov K; Tcholakova S; Denkov ND; Ananthapadmanabhan KP; Lips A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Nov; 78(5 Pt 1):051405. PubMed ID: 19113128
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamics of an initially spherical bubble rising in quiescent liquid.
    Tripathi MK; Sahu KC; Govindarajan R
    Nat Commun; 2015 Feb; 6():6268. PubMed ID: 25687557
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bubble dynamics and atomization of acoustically levitated diesel and biodiesel droplets using femtosecond laser pulses.
    Jagadale VS; Deshmukh D; Hanstorp D; Mishra YN
    Sci Rep; 2024 Apr; 14(1):8285. PubMed ID: 38594290
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Behavior and dynamics of bubble breakup in gas pipeline leaks and accidental subsea oil well blowouts.
    Wang B; Socolofsky SA; Lai CCK; Adams EE; Boufadel MC
    Mar Pollut Bull; 2018 Jun; 131(Pt A):72-86. PubMed ID: 29886999
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental Study of Flow Boiling Regimes Occurring in a Microfluidic T-Junction.
    Bao X; Yang F; Zhang X
    Micromachines (Basel); 2023 Dec; 14(12):. PubMed ID: 38138404
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Numerical analysis of the effect of bubble distribution on multiple-bubble behavior.
    Ochiai N; Ishimoto J
    Ultrason Sonochem; 2020 Mar; 61():104818. PubMed ID: 31683237
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional lattice Boltzmann model for immiscible two-phase flow simulations.
    Liu H; Valocchi AJ; Kang Q
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 2):046309. PubMed ID: 22680576
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Axisymmetric bubble pinch-off at high Reynolds numbers.
    Gordillo JM; Sevilla A; Rodríguez-Rodríguez J; Martínez-Bazán C
    Phys Rev Lett; 2005 Nov; 95(19):194501. PubMed ID: 16383983
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cooperative breakups induced by drop-to-drop interactions in one-dimensional flows of drops against micro-obstacles.
    Schmit A; Salkin L; Courbin L; Panizza P
    Soft Matter; 2015 Mar; 11(12):2454-60. PubMed ID: 25668310
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bubble motion through a generalized power-law fluid flowing in a vertical tube.
    Mukundakrishnan K; Eckmann DM; Ayyaswamy PS
    Ann N Y Acad Sci; 2009 Apr; 1161():256-67. PubMed ID: 19426324
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical study of wall effects on buoyant gas-bubble rise in a liquid-filled finite cylinder.
    Mukundakrishnan K; Quan S; Eckmann DM; Ayyaswamy PS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Sep; 76(3 Pt 2):036308. PubMed ID: 17930342
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Numerical Modeling of Transient Two-Phase Flow and the Coalescence and Breakup of Bubbles in a Continuous Casting Mold.
    Tian Y; Shi P; Xu L; Qiu S; Zhu R
    Materials (Basel); 2022 Apr; 15(8):. PubMed ID: 35454503
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Favourably regulating two-phase flow regime of flow boiling HFE-7100 in microchannels using silicon nanowires.
    Alam T; Li W; Chang W; Yang F; Khan J; Li C
    Sci Rep; 2021 May; 11(1):11131. PubMed ID: 34045466
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.