These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 38930682)

  • 1. Design of Lidar Receiving Optical System with Large FoV and High Concentration of Light to Resist Background Light Interference.
    Li Q; Wang S; Wu J; Chen F; Gao H; Gong H
    Micromachines (Basel); 2024 May; 15(6):. PubMed ID: 38930682
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Infrared detector module for airborne hyperspectral LiDAR: design and demonstration.
    Qian L; Wu D; Liu D; Zhong L; Shi S; Song S; Gong W
    Appl Opt; 2023 Mar; 62(8):2161-2167. PubMed ID: 37133106
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design of the quadrangular prism beam splitting receiving system in the MEMS-based scanning LIDAR.
    Lee X; Zhou W; Huang Z
    Appl Opt; 2023 Feb; 62(5):1285-1289. PubMed ID: 36821234
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A 256 × 256 LiDAR Imaging System Based on a 200 mW SPAD-Based SoC with Microlens Array and Lightweight RGB-Guided Depth Completion Neural Network.
    Wang J; Li J; Wu Y; Yu H; Cui L; Sun M; Chiang PY
    Sensors (Basel); 2023 Aug; 23(15):. PubMed ID: 37571709
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of system geometry and other physical factors on photon sensitivity of high-resolution positron emission tomography.
    Habte F; Foudray AM; Olcott PD; Levin CS
    Phys Med Biol; 2007 Jul; 52(13):3753-72. PubMed ID: 17664575
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increasing the effective aperture of a detector and enlarging the receiving field of view in a 3D imaging lidar system through hexagonal prism beam splitting.
    Lee X; Wang X; Cui T; Wang C; Li Y; Li H; Wang Q
    Opt Express; 2016 Jul; 24(14):15222-31. PubMed ID: 27410800
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Semisolid Micromechanical Beam Steering System Based on Micrometa-Lens Arrays.
    Chen R; Shao Y; Zhou Y; Dang Y; Dong H; Zhang S; Wang Y; Chen J; Ju BF; Ma Y
    Nano Lett; 2022 Feb; 22(4):1595-1603. PubMed ID: 35133850
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prototype development and evaluation of a hyperspectral lidar optical receiving system.
    Qian L; Wu D; Liu D; Shi S; Song S; Gong W
    Opt Express; 2024 Mar; 32(7):10786-10800. PubMed ID: 38570944
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Design and study of middle infrared spectrum system with variational field of view].
    Bai Y; Xing TW; Jiang YD; Feng C
    Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Aug; 34(8):2293-7. PubMed ID: 25474980
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Frequency-angular resolving LiDAR using chip-scale acousto-optic beam steering.
    Li B; Lin Q; Li M
    Nature; 2023 Aug; 620(7973):316-322. PubMed ID: 37380781
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Low-cost dynamic real-time foveated imager.
    Niu Y; Chang J; Lv F; Shen B; Chen W
    Appl Opt; 2017 Oct; 56(28):7915-7920. PubMed ID: 29047778
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single full-FOV reconstruction Fourier ptychographic microscopy.
    Zhu Y; Sun M; Chen X; Li H; Mu Q; Li D; Xuan L
    Biomed Opt Express; 2020 Dec; 11(12):7175-7182. PubMed ID: 33408988
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low-voltage wide-field-of-view lidar scanning system based on a MEMS mirror.
    Zhou J; Qian K
    Appl Opt; 2019 Feb; 58(5):A283-A290. PubMed ID: 30874006
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fiber optic bundle array wide field-of-view optical receiver for free space optical communications.
    Hahn DV; Brown DM; Rolander NW; Sluz JE; Venkat R
    Opt Lett; 2010 Nov; 35(21):3559-61. PubMed ID: 21042349
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optical system design of double-sided telecentric microscope with high numerical aperture and long working distance.
    Zhang K; Li J; Sun S; Wang J; Yu S
    Opt Express; 2023 Jul; 31(14):23518-23532. PubMed ID: 37475433
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wide field-of-view volumetric imaging by a mesoscopic scanning oblique plane microscopy with switchable objective lenses.
    Shao W; Kilic K; Yin W; Wirak G; Qin X; Feng H; Boas D; Gabel CV; Yi J
    Quant Imaging Med Surg; 2021 Mar; 11(3):983-997. PubMed ID: 33654671
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of a field lens for improving the overlap function of a lidar system employing an optical fiber in the receiver assembly.
    Comeron A; Sicard M; Kumar D; Rocadenbosch F
    Appl Opt; 2011 Oct; 50(28):5538-44. PubMed ID: 22016223
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-resolution and a wide field-of-view eye-safe LiDAR based on a static unitary detector for low-SWaP applications.
    Han M; Seo HS; Mheen B
    Opt Express; 2022 Aug; 30(17):30918-30935. PubMed ID: 36242187
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design of a Concentric Multi-Scale Zoom Optical System Based on Wide Object Distance and High-Precision Imaging.
    Zhang K; Qu Z; Li J; Wang J; Sun S; Yang F
    Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236454
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.