These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 38930686)

  • 1. Low-Voltage High-Frequency Lamb-Wave-Driven Micromotors.
    Wang Z; Wei W; Zhang M; Duan X; Li Q; Chen X; Yang Q; Pang W
    Micromachines (Basel); 2024 May; 15(6):. PubMed ID: 38930686
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Continuous Particle Aggregation and Separation in Acoustofluidic Microchannels Driven by Standing Lamb Waves.
    Hsu JC; Chang CY
    Micromachines (Basel); 2022 Dec; 13(12):. PubMed ID: 36557473
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conventional electromagnetic acoustic transducer development for optimum Lamb wave modes.
    Murayama R; Mizutani K
    Ultrasonics; 2002 May; 40(1-8):491-5. PubMed ID: 12159989
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of Lamb Wave-Based Unidirectional Transducers Toward Highly Efficient Microfluidic Applications.
    Fu C; Yang Q; Ke Y; Tao R; Luo J; Fan X; Zhang B; Li H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Apr; 69(4):1549-1555. PubMed ID: 35143396
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comb-drive actuator driven by capacitively-coupled-power.
    Chang CM; Wang SY; Chen R; Yeh JA; Hou MT
    Sensors (Basel); 2012; 12(8):10881-9. PubMed ID: 23112635
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorescence Detection of miRNA-21 Using Au/Pt Bimetallic Tubular Micromotors Driven by Chemical and Surface Acoustic Wave Forces.
    Celik Cogal G; Das PK; Yurdabak Karaca G; Bhethanabotla VR; Uygun Oksuz A
    ACS Appl Bio Mater; 2021 Nov; 4(11):7932-7941. PubMed ID: 35006774
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Actuation Properties of Paper Actuators Fabricated Using PEDOT/PSS Electrode Films.
    Wu Y; Minamikawa H; Nakazumi T; Hara Y
    J Oleo Sci; 2020 Oct; 69(10):1331-1337. PubMed ID: 32908098
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of interfacial property of a two-layered plate using a nonlinear low-frequency Lamb wave approach.
    Chen H; Deng M; Gao G; Xu C; Hu N; Xiang Y
    Ultrasonics; 2022 Aug; 124():106741. PubMed ID: 35395495
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Graphene-mediated microfluidic transport and nebulization via high frequency Rayleigh wave substrate excitation.
    Ang KM; Yeo LY; Hung YM; Tan MK
    Lab Chip; 2016 Sep; 16(18):3503-14. PubMed ID: 27502324
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Concentration of Microparticles/Cells Based on an Ultra-Fast Centrifuge Virtual Tunnel Driven by a Novel Lamb Wave Resonator Array.
    Wei W; Wang Z; Wang B; Pang W; Yang Q; Duan X
    Biosensors (Basel); 2024 May; 14(6):. PubMed ID: 38920584
    [TBL] [Abstract][Full Text] [Related]  

  • 11. State-of-the-art surface acoustic wave linear motor and its future applications.
    Kurosawa MK
    Ultrasonics; 2000 Mar; 38(1-8):15-9. PubMed ID: 10829620
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Miniature bulk PZT traveling wave ultrasonic motors for low-speed high-torque rotary actuation.
    Hareesh P; DeVoe DL
    J Microelectromech Syst; 2018 Jun; 27(3):547-554. PubMed ID: 30505138
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reflection of ultrasonic Lamb waves produced by thin conducting strips.
    Zaitsev BD; Joshi SG
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(6):1539-44. PubMed ID: 18244351
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flow induced by acoustic streaming on surface-acoustic-wave devices and its application in biofouling removal: a computational study and comparisons to experiment.
    Sankaranarayanan SK; Cular S; Bhethanabotla VR; Joseph B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jun; 77(6 Pt 2):066308. PubMed ID: 18643372
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design and dynamic analysis of a novel compound bending hollow piezoelectric beam miniature rotary actuator.
    Zhu B; Li C; Wu Z; Zhu X
    Ultrasonics; 2023 Sep; 134():107065. PubMed ID: 37356315
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integration of deployable fluid lenses and reflectors with endoluminal therapeutic ultrasound applicators: Preliminary investigations of enhanced penetration depth and focal gain.
    Adams MS; Salgaonkar VA; Scott SJ; Sommer G; Diederich CJ
    Med Phys; 2017 Oct; 44(10):5339-5356. PubMed ID: 28681404
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acoustic streaming produced by a cylindrical bubble undergoing volume and translational oscillations in a microfluidic channel.
    Doinikov AA; Combriat T; Thibault P; Marmottant P
    Phys Rev E; 2016 Sep; 94(3-1):033109. PubMed ID: 27739843
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flexible surface acoustic wave resonators built on disposable plastic film for electronics and lab-on-a-chip applications.
    Jin H; Zhou J; He X; Wang W; Guo H; Dong S; Wang D; Xu Y; Geng J; Luo JK; Milne WI
    Sci Rep; 2013; 3():2140. PubMed ID: 23828169
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The complexity of surface acoustic wave fields used for microfluidic applications.
    Weser R; Winkler A; Weihnacht M; Menzel S; Schmidt H
    Ultrasonics; 2020 Aug; 106():106160. PubMed ID: 32334142
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lamb to Rayleigh Wave Conversion on Superstrates as a Means to Facilitate Disposable Acoustomicrofluidic Applications.
    Wong KS; Lee L; Hung YM; Yeo LY; Tan MK
    Anal Chem; 2019 Oct; 91(19):12358-12368. PubMed ID: 31500406
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.