These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 38930727)

  • 1. Combined Control for a Piezoelectric Actuator Using a Feed-Forward Neural Network and Feedback Integral Fast Terminal Sliding Mode Control.
    Artetxe E; Barambones O; Calvo I; Del Rio A; Uralde J
    Micromachines (Basel); 2024 Jun; 15(6):. PubMed ID: 38930727
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hysteresis Compensation and Sliding Mode Control with Perturbation Estimation for Piezoelectric Actuators.
    Ding B; Li Y
    Micromachines (Basel); 2018 May; 9(5):. PubMed ID: 30424174
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultraprecise Controller for Piezoelectric Actuators Based on Deep Learning and Model Predictive Control.
    Uralde J; Artetxe E; Barambones O; Calvo I; Fernández-Bustamante P; Martin I
    Sensors (Basel); 2023 Feb; 23(3):. PubMed ID: 36772730
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Finite-Time Sliding-Mode Controller Based on the Disturbance Observer and Neural Network for Hysteretic Systems with Application in Piezoelectric Actuators.
    Cheng L; Chen W; Tian L; Xie Y
    Sensors (Basel); 2023 Jul; 23(14):. PubMed ID: 37514541
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling and compensation of hysteresis in piezoelectric actuators.
    Yu Z; Wu Y; Fang Z; Sun H
    Heliyon; 2020 May; 6(5):e03999. PubMed ID: 32509984
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fractional order neural sliding mode control based on the FO-Hammerstein model of piezoelectric actuator.
    Yang L; Zhao Z; Li D
    ISA Trans; 2023 Nov; 142():515-526. PubMed ID: 37659871
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonlinear Tracking Control of a Conductive Supercoiled Polymer Actuator.
    Luong TA; Cho KH; Song MG; Koo JC; Choi HR; Moon H
    Soft Robot; 2018 Apr; 5(2):190-203. PubMed ID: 29189106
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Positioning Error Analysis and Control of a Piezo-Driven 6-DOF Micro-Positioner.
    Lin C; Zheng S; Li P; Shen Z; Wang S
    Micromachines (Basel); 2019 Aug; 10(8):. PubMed ID: 31426503
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Composite proportional-integral sliding mode control with feedforward control for cell puncture mechanism with piezoelectric actuation.
    Yu S; Xie M; Wu H; Ma J; Li Y; Gu H
    ISA Trans; 2022 May; 124():427-435. PubMed ID: 32081400
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Global fast non-singular terminal sliding-mode control for high-speed nanopositioning.
    Wang G; Zhou Y; Ni L; Aphale SS
    ISA Trans; 2023 May; 136():560-570. PubMed ID: 36372602
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultra-precise tracking control of piezoelectric actuators via a fuzzy hysteresis model.
    Li P; Yan F; Ge C; Zhang M
    Rev Sci Instrum; 2012 Aug; 83(8):085114. PubMed ID: 22938339
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adaptive nonsingular terminal sliding mode controller for micro/nanopositioning systems driven by linear piezoelectric ceramic motors.
    Safa A; Abdolmalaki RY; Shafiee S; Sadeghi B
    ISA Trans; 2018 Jun; 77():122-132. PubMed ID: 29661549
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two-degrees-of-freedom PI
    San-Millan A; Feliu-Batlle V; Aphale SS
    ISA Trans; 2019 Aug; 91():207-217. PubMed ID: 30745192
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-Bandwidth Repetitive Trajectory Tracking Control of Piezoelectric Actuators via Phase-Hysteresis Hybrid Compensation and Feedforward-Feedback Combined Control.
    Yuan J; Wu H; Qin Y; Han J
    Micromachines (Basel); 2023 Oct; 14(11):. PubMed ID: 38004866
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neural Network Self-Tuning Control for a Piezoelectric Actuator.
    Li W; Zhang C; Gao W; Zhou M
    Sensors (Basel); 2020 Jun; 20(12):. PubMed ID: 32545569
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-speed tracking control of piezoelectric actuators using an ellipse-based hysteresis model.
    Gu G; Zhu L
    Rev Sci Instrum; 2010 Aug; 81(8):085104. PubMed ID: 20815625
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Trajectory tracking of piezoelectric positioning stages using a dynamic sliding-mode control.
    Shieh HJ; Huang PK
    IEEE Trans Ultrason Ferroelectr Freq Control; 2006 Oct; 53(10):1872-82. PubMed ID: 17036795
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new simple asymmetric hysteresis operator and its application to inverse control of piezoelectric actuators.
    Badel A; Qiu J; Nakano T
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 May; 55(5):1086-94. PubMed ID: 18519217
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RBF neural network dynamic sliding mode control based on lambert W function for piezoelectric stick-slip actuator.
    Li Y; Fan P; Zhang Z; Li Y; Yang S; Lu X
    Rev Sci Instrum; 2024 Jun; 95(6):. PubMed ID: 38888401
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adaptive fuzzy PID cross coupled control for multi-axis motion system based on sliding mode disturbance observation.
    Wang S; Chen Y; Zhang G
    Sci Prog; 2021; 104(2):368504211011847. PubMed ID: 33913385
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.