These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 38930752)

  • 1. Characterization of Magnetorheological Impact Foams in Compression.
    Choi Y; Wereley NM
    Micromachines (Basel); 2024 Jun; 15(6):. PubMed ID: 38930752
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Magneto-Mechanical Coupling Study of Magnetorheological Elastomer Thin Films for Sensitivity Enhancement.
    Sang S; Tan Q; Chai Q; Jiang J; Wu K; Xiao P; Zhao D; Guo X; Yang Z; Dong X; Ge Y
    ACS Sens; 2024 Jan; 9(1):406-414. PubMed ID: 38183297
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Compressive Behavior of Aluminum Microfibers Reinforced Semi-Rigid Polyurethane Foams.
    Linul E; Vălean C; Linul PA
    Polymers (Basel); 2018 Nov; 10(12):. PubMed ID: 30961223
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Magneto-Hyperelastic Model for Silicone Rubber-Based Isotropic Magnetorheological Elastomer under Quasi-Static Compressive Loading.
    Qiao Y; Zhang J; Zhang M; Liu L; Zhai P
    Polymers (Basel); 2020 Oct; 12(11):. PubMed ID: 33105773
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Magneto-Mechanical Hyperelastic Property of Isotropic Magnetorheological Elastomers with Hybrid-Size Magnetic Particles.
    Wang L; Zhang K; Chen Z
    Materials (Basel); 2023 Nov; 16(23):. PubMed ID: 38068026
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of the Effect of Carbonyl Iron Micro-Particles on the Mechanical and Rheological Properties of Isotropic and Anisotropic MREs: Constitutive Magneto-Mechanical Material Model.
    Soria-Hernández CG; Palacios-Pineda LM; Elías-Zúñiga A; Perales-Martínez IA; Martínez-Romero O
    Polymers (Basel); 2019 Oct; 11(10):. PubMed ID: 31627370
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Giant Cushioning Effect in Facile Polymer/Nanoclay-Coated Flexible Polyurethane Foams.
    Ji W; Zhang Q; van Duijneveldt JS; Briscoe WH; Scarpa F
    ACS Appl Polym Mater; 2024 Sep; 6(17):10322-10333. PubMed ID: 39296487
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Static Mechanical Properties of Expanded Polypropylene Crushable Foam.
    Rumianek P; Dobosz T; Nowak R; Dziewit P; Aromiński A
    Materials (Basel); 2021 Jan; 14(2):. PubMed ID: 33419072
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of Carbonyl Iron Particle Types on the Structure and Performance of Magnetorheological Elastomers: A Frequency and Strain Dependent Study.
    Salem AMH; Ali A; Ramli RB; Muthalif AGA; Julai S
    Polymers (Basel); 2022 Oct; 14(19):. PubMed ID: 36236145
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crushing Responses of Expanded Polypropylene Foam.
    Xing Y; Sun D; Zhang M; Shu G
    Polymers (Basel); 2023 Apr; 15(9):. PubMed ID: 37177205
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D Printing of Liquid Crystal Elastomer Foams for Enhanced Energy Dissipation Under Mechanical Insult.
    Luo C; Chung C; Traugutt NA; Yakacki CM; Long KN; Yu K
    ACS Appl Mater Interfaces; 2021 Mar; 13(11):12698-12708. PubMed ID: 33369399
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical Properties and Cushioning Effectiveness of FPUF-EPS Combination Materials.
    Zhang Z; Zhong W; Li J; Luo J
    Materials (Basel); 2023 Oct; 16(21):. PubMed ID: 37959483
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental Study of the Dynamic and Static Compression Mechanical Properties of Closed-Cell PVC Foams.
    Yao H; Pang Y; Liu X; Qu J
    Polymers (Basel); 2022 Aug; 14(17):. PubMed ID: 36080597
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanical Properties Comparison of Isotropic vs. Anisotropic Hybrid Magnetorheological Elastomer-Fluid.
    Ananzeh HM; Ramli R; Julai S; Muthalif AGA
    Polymers (Basel); 2024 Apr; 16(9):. PubMed ID: 38732684
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microstructure and Deformation Response of TRIP-Steel Syntactic Foams to Quasi-Static and Dynamic Compressive Loads.
    Ehinger D; Weise J; Baumeister J; Funk A; Waske A; Krüger L; Martin U
    Materials (Basel); 2018 Apr; 11(5):. PubMed ID: 29695107
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Compressive Properties and Energy Absorption Behavior of 316L Steel Foam Prepared by Space Holder Technique.
    Hu G; Xu G; Gao Q; Feng Z; Huang P; Zu G
    Materials (Basel); 2023 Feb; 16(4):. PubMed ID: 36837050
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magnetic and Tunable Sound Absorption Properties of an In-Situ Prepared Magnetorheological Foam.
    Muhazeli NS; Nordin NA; Ubaidillah U; Mazlan SA; Abdul Aziz SA; Nazmi N; Yahya I
    Materials (Basel); 2020 Dec; 13(24):. PubMed ID: 33321851
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Magnetic Particle Filled Elastomeric Hybrid Composites and Their Magnetorheological Response.
    Kwon SH; Lee JH; Choi HJ
    Materials (Basel); 2018 Jun; 11(6):. PubMed ID: 29921808
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication and Characterization of Isotropic and Anisotropic Magnetorheological Elastomers, Based on Silicone Rubber and Carbonyl Iron Microparticles.
    Puente-Córdova JG; Reyes-Melo ME; Palacios-Pineda LM; Martínez-Perales IA; Martínez-Romero O; Elías-Zúñiga A
    Polymers (Basel); 2018 Dec; 10(12):. PubMed ID: 30961268
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Effect of Microparticles on the Storage Modulus and Durability Behavior of Magnetorheological Elastomer.
    Johari MAF; Mazlan SA; Nordin NA; Ubaidillah U; Aziz SAA; Nazmi N; Johari N; Choi SB
    Micromachines (Basel); 2021 Aug; 12(8):. PubMed ID: 34442570
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.