These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 38930773)

  • 1. Universal and Versatile Magnetic Connectors for Microfluidic Devices.
    Alvarez-Amador M; Salimov A; Brouzes E
    Micromachines (Basel); 2024 Jun; 15(6):. PubMed ID: 38930773
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Connecting microfluidic chips using a chemically inert, reversible, multichannel chip-to-world-interface.
    Wilhelm E; Neumann C; Duttenhofer T; Pires L; Rapp BE
    Lab Chip; 2013 Nov; 13(22):4343-51. PubMed ID: 24056989
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Magnetic connectors for microfluidic applications.
    Atencia J; Cooksey GA; Jahn A; Zook JM; Vreeland WN; Locascio LE
    Lab Chip; 2010 Jan; 10(2):246-9. PubMed ID: 20066254
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Facile Patterning of Thermoplastic Elastomers and Robust Bonding to Glass and Thermoplastics for Microfluidic Cell Culture and Organ-on-Chip.
    Schneider S; Brás EJS; Schneider O; Schlünder K; Loskill P
    Micromachines (Basel); 2021 May; 12(5):. PubMed ID: 34070209
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A vacuum manifold for rapid world-to-chip connectivity of complex PDMS microdevices.
    Cooksey GA; Plant AL; Atencia J
    Lab Chip; 2009 May; 9(9):1298-300. PubMed ID: 19370253
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Workshop, Cost-Effective and Streamlined Fabrications of Re-Usable World-To-Chip Connectors for Handling Sample of Limited Volume and for Assembling Chip Array.
    Lue JH; Su YS; Kuo TC
    Sensors (Basel); 2018 Dec; 18(12):. PubMed ID: 30513786
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PMMA Solution Assisted Room Temperature Bonding for PMMA⁻PC Hybrid Devices.
    Song IH; Park T
    Micromachines (Basel); 2017 Sep; 8(9):. PubMed ID: 30400474
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Critical Study on the Tube-to-Chip Luer Slip Connectors.
    Etxeberria L; Aguilera U; Garcia de Madinabeitia P; Saez A; Zaldua AM; Vilas-Vilela JL; Fernández L; Llobera A
    Front Med Technol; 2022; 4():881930. PubMed ID: 35711385
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of four functional biocompatible pressure-sensitive adhesives for rapid prototyping of cell-based lab-on-a-chip and organ-on-a-chip systems.
    Kratz SRA; Eilenberger C; Schuller P; Bachmann B; Spitz S; Ertl P; Rothbauer M
    Sci Rep; 2019 Jun; 9(1):9287. PubMed ID: 31243326
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Manufacturing of Microfluidic Devices with Interchangeable Commercial Fiber Optic Sensors.
    Wlodarczyk KL; MacPherson WN; Hand DP; Maroto-Valer MM
    Sensors (Basel); 2021 Nov; 21(22):. PubMed ID: 34833567
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid Fabrication of Membrane-Integrated Thermoplastic Elastomer Microfluidic Devices.
    McMillan AH; Thomée EK; Dellaquila A; Nassman H; Segura T; Lesher-Pérez SC
    Micromachines (Basel); 2020 Jul; 11(8):. PubMed ID: 32731570
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Connector-Free World-to-Chip Interconnection for Microfluidic Devices.
    Song IH; Park T
    Micromachines (Basel); 2019 Feb; 10(3):. PubMed ID: 30818805
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid Prototyping of Multi-Functional and Biocompatible Parafilm
    Wei Y; Wang T; Wang Y; Zeng S; Ho YP; Ho HP
    Micromachines (Basel); 2023 Mar; 14(3):. PubMed ID: 36985063
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Materials for microfluidic chip fabrication.
    Ren K; Zhou J; Wu H
    Acc Chem Res; 2013 Nov; 46(11):2396-406. PubMed ID: 24245999
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A microfluidic D-subminiature connector.
    Scott A; Au AK; Vinckenbosch E; Folch A
    Lab Chip; 2013 Jun; 13(11):2036-2039. PubMed ID: 23584282
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-pressure on-chip mechanical valves for thermoplastic microfluidic devices.
    Chen CF; Liu J; Chang CC; DeVoe DL
    Lab Chip; 2009 Dec; 9(24):3511-6. PubMed ID: 20024030
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid Prototyping of Thermoplastic Microfluidic 3D Cell Culture Devices by Creating Regional Hydrophilicity Discrepancy.
    Bai H; Olson KNP; Pan M; Marshall T; Singh H; Ma J; Gilbride P; Yuan YC; McCormack J; Si L; Maharjan S; Huang D; Qian X; Livermore C; Zhang YS; Xie X
    Adv Sci (Weinh); 2024 Feb; 11(7):e2304332. PubMed ID: 38032118
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Beyond PDMS: off-stoichiometry thiol-ene (OSTE) based soft lithography for rapid prototyping of microfluidic devices.
    Carlborg CF; Haraldsson T; Öberg K; Malkoch M; van der Wijngaart W
    Lab Chip; 2011 Sep; 11(18):3136-47. PubMed ID: 21804987
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multi-Resin Masked Stereolithography (MSLA) 3D Printing for Rapid and Inexpensive Prototyping of Microfluidic Chips with Integrated Functional Components.
    Ahmed I; Sullivan K; Priye A
    Biosensors (Basel); 2022 Aug; 12(8):. PubMed ID: 36005047
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low Cost, Ease-of-Access Fabrication of Microfluidic Devices Using Wet Paper Molds.
    Thakur R; Fridman GY
    Micromachines (Basel); 2022 Aug; 13(9):. PubMed ID: 36144030
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.