BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 38930789)

  • 1. Au-Based Bimetallic Catalysts for Aerobic Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid under Base-Free Reaction Conditions.
    Su J; Liu Z; Tan Y; Xiao Y; Zhan N; Ding Y
    Molecules; 2024 Jun; 29(12):. PubMed ID: 38930789
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coupling Natural Halloysite Nanotubes and Bimetallic Pt-Au Alloy Nanoparticles for Highly Efficient and Selective Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid.
    Zhong X; Yuan P; Wei Y; Liu D; Losic D; Li M
    ACS Appl Mater Interfaces; 2022 Jan; 14(3):3949-3960. PubMed ID: 35015494
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Facile Synthesis Route to AuPd Alloys for the Selective Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid.
    Peng Y; Qiu B; Ding S; Hu M; Zhang Y; Jiao Y; Fan X; Parlett CMA
    Chempluschem; 2024 Jan; 89(1):e202300545. PubMed ID: 37884457
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electron Structure Tuned Oxygen Vacancy-Rich AuPd/CeO
    Wei Y; Pan J; Yan X; Mao Y; Zhang Y
    ChemSusChem; 2024 May; 17(9):e202400241. PubMed ID: 38494446
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly efficient catalytic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid using bimetallic Pt-Cu alloy nanoparticles as catalysts.
    Cheng X; Li S; Liu S; Xin Y; Yang J; Chen B; Liu H
    Chem Commun (Camb); 2022 Jan; 58(8):1183-1186. PubMed ID: 34981091
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal Faces-Tailored Oxygen Vacancy in Au/CeO
    Wei Y; Zhang Y; Chen Y; Wang F; Cao Y; Guan W; Li X
    ChemSusChem; 2022 Jul; 15(13):e202101983. PubMed ID: 34644006
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gold nanoclusters confined in a supercage of Y zeolite for aerobic oxidation of HMF under mild conditions.
    Cai J; Ma H; Zhang J; Song Q; Du Z; Huang Y; Xu J
    Chemistry; 2013 Oct; 19(42):14215-23. PubMed ID: 23999985
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Base-Free Aerobic Oxidation of Furfuralcohols and Furfurals to Furancarboxylic Acids over Nitrogen-Doped Carbon-Supported AuPd Bowl-Like Catalyst.
    Guan W; Zhang Y; Yan C; Chen Y; Wei Y; Cao Y; Wang F; Huo P
    ChemSusChem; 2022 Aug; 15(16):e202201041. PubMed ID: 35686849
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inexpensive but Highly Efficient Co-Mn Mixed-Oxide Catalysts for Selective Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid.
    Rao KTV; Rogers JL; Souzanchi S; Dessbesell L; Ray MB; Xu CC
    ChemSusChem; 2018 Sep; 11(18):3323-3334. PubMed ID: 30006949
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient Catalytic Conversion of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid over Ruthenium Cluster-Embedded Ni(OH)
    Chai X; Jiang K; Wang J; Ren Z; Liu X; Chen L; Zhuang X; Wang T
    ChemSusChem; 2022 Aug; 15(16):e202200863. PubMed ID: 35716074
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Immobilised Ruthenium Complexes for the Electrooxidation of 5-Hydroxymethylfurfural.
    Bühler J; Muntwyler A; Roithmeyer H; Adams P; Besmer ML; Blacque O; Tilley SD
    Chemistry; 2024 Apr; 30(19):e202304181. PubMed ID: 38285807
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ruthenium Supported on High-Surface-Area Zirconia as an Efficient Catalyst for the Base-Free Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid.
    Pichler CM; Al-Shaal MG; Gu D; Joshi H; Ciptonugroho W; Schüth F
    ChemSusChem; 2018 Jul; 11(13):2083-2090. PubMed ID: 29761659
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bimetallic Nanoparticles as Efficient Catalysts: Facile and Green Microwave Synthesis.
    Blosi M; Ortelli S; Costa AL; Dondi M; Lolli A; Andreoli S; Benito P; Albonetti S
    Materials (Basel); 2016 Jul; 9(7):. PubMed ID: 28773672
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Facile Production of 2,5-Furandicarboxylic Acid via Oxidation of Industrially Sourced Crude 5-Hydroxymethylfurfural.
    Zuo X; Venkitasubramanian P; Martin KJ; Subramaniam B
    ChemSusChem; 2022 Jul; 15(13):e202102050. PubMed ID: 34913609
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced Basicity of MnOx-Supported Ru for the Selective Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid.
    Pal P; Saravanamurugan S
    ChemSusChem; 2022 Sep; 15(17):e202200902. PubMed ID: 35713635
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bimetallic M-Cu (M = Ag, Au, Ni) Nanoparticles Supported on γAl
    Guerra-Que Z; Cortez-Elizalde J; Pérez-Vidal H; Arévalo-Pérez JC; Silahua-Pavón AA; Córdova-Pérez GE; Cuauhtémoc-López I; Martínez-García H; González-Díaz A; Torres-Torres JG
    Nanomaterials (Basel); 2021 Sep; 11(10):. PubMed ID: 34685011
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxygen Vacancy-Induced Metal-Support Interactions in AuPd/ZrO
    Chen Y; Sun L; Li Y; Cao Y; Guan W; Pan J; Zhang Z; Zhang Y
    Inorg Chem; 2023 Sep; 62(37):15277-15292. PubMed ID: 37656824
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of Gold Electronic State on the Catalytic Performance of Nano Gold Catalysts in
    Pakrieva E; Kolobova E; Kotolevich Y; Pascual L; Carabineiro SAC; Kharlanov AN; Pichugina D; Nikitina N; German D; Partida TAZ; Vazquez HJT; Farías MH; Bogdanchikova N; Cortés Corberán V; Pestryakov A
    Nanomaterials (Basel); 2020 May; 10(5):. PubMed ID: 32370180
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MOF Material-Derived Bimetallic Sulfide Co
    Guo C; Huo Y; Zhang Q; Wan K; Yang G; Liu Z; Peng F
    Nanomaterials (Basel); 2023 Aug; 13(16):. PubMed ID: 37630905
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent Advances in the Development of 5-Hydroxymethylfurfural Oxidation with Base (Nonprecious)-Metal-Containing Catalysts.
    Pal P; Saravanamurugan S
    ChemSusChem; 2019 Jan; 12(1):145-163. PubMed ID: 30362263
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.