These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 38930794)

  • 21. Emission characteristics of co-combustion of sewage sludge with olive cake and lignite coal in a circulating fluidized bed.
    Toraman OY; Topal H; Bayat O; Atimtay AT
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2004; 39(4):973-86. PubMed ID: 15137713
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Research on Combustion Properties and Pollutant Emission Characteristics of Blends of Maltol Byproduct/Pine Sawdust.
    Liu Y; Wang Y; Dai Y; Bai Y; Zhao Q
    ACS Omega; 2022 Jan; 7(1):325-333. PubMed ID: 35036702
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The Evaluation of Torrefied Wood Using a Cone Calorimeter.
    Rantuch P; Martinka J; Ház A
    Polymers (Basel); 2021 May; 13(11):. PubMed ID: 34071814
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Investigating the co-firing characteristics of bamboo wastes and coal through cone calorimetry and thermogravimetric analysis coupled with Fourier transform infrared spectroscopy.
    Xiang H; Feng Z; Yang J; Hu W; Liang F; Yang X; Zhang T; Mi B; Liu Z
    Waste Manag Res; 2020 Aug; 38(8):896-902. PubMed ID: 31868133
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evaluation of synergy during co-pyrolysis of torrefied sawdust, coal and paraffin. A kinetic and thermodynamic dataset.
    Florentino-Madiedo L; Vega MF; Díaz-Faes E; Barriocanal C
    Data Brief; 2021 Aug; 37():107170. PubMed ID: 34169124
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Investigating pyrolysis and combustion characteristics of torrefied bamboo, torrefied wood and their blends.
    Mi B; Liu Z; Hu W; Wei P; Jiang Z; Fei B
    Bioresour Technol; 2016 Jun; 209():50-5. PubMed ID: 26950755
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Combustion characteristics and air pollutant formation during oxy-fuel co-combustion of microalgae and lignite.
    Gao Y; Tahmasebi A; Dou J; Yu J
    Bioresour Technol; 2016 May; 207():276-84. PubMed ID: 26894568
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Determination of the Kinetics and Thermodynamic Parameters of Lignocellulosic Biomass Subjected to the Torrefaction Process.
    Ivanovski M; Petrovic A; Ban I; Goricanec D; Urbancl D
    Materials (Basel); 2021 Dec; 14(24):. PubMed ID: 34947472
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Atmosphere-dependent combustion of Ganoderma lucidum biomass toward its enhanced transformability into green energy.
    Cao H; Zhan H; Qi J; Lin S; Ren M; Liang J; Evrendilek F; He Y; Liu J
    Environ Sci Pollut Res Int; 2024 Jun; 31(29):42372-42387. PubMed ID: 38874757
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Kinetic analysis of manure pyrolysis and combustion processes.
    Fernandez-Lopez M; Pedrosa-Castro GJ; Valverde JL; Sanchez-Silva L
    Waste Manag; 2016 Dec; 58():230-240. PubMed ID: 27595497
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Determination of kinetic parameters for biomass combustion.
    Álvarez A; Pizarro C; García R; Bueno JL; Lavín AG
    Bioresour Technol; 2016 Sep; 216():36-43. PubMed ID: 27233095
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Combustion Characterization and Kinetic Analysis of Mixed Sludge and Lignite Combustion.
    Sun Y; Sun H; Yang T; Zhu Y; Li R
    ACS Omega; 2024 Feb; 9(6):6912-6923. PubMed ID: 38371850
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Pyrolysis of banana leaves biomass: Physico-chemical characterization, thermal decomposition behavior, kinetic and thermodynamic analyses.
    Singh RK; Pandey D; Patil T; Sawarkar AN
    Bioresour Technol; 2020 Aug; 310():123464. PubMed ID: 32388356
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Thermochemical conversion pathways of Kappaphycus alvarezii granules through study of kinetic models.
    Das P; Mondal D; Maiti S
    Bioresour Technol; 2017 Jun; 234():233-242. PubMed ID: 28319772
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Thermogravimetric analysis of the behavior of sub-bituminous coal and cellulosic ethanol residue during co-combustion.
    Buratti C; Barbanera M; Bartocci P; Fantozzi F
    Bioresour Technol; 2015 Jun; 186():154-162. PubMed ID: 25817025
    [TBL] [Abstract][Full Text] [Related]  

  • 36. (Co-)combustion of additives, water hyacinth and sewage sludge: Thermogravimetric, kinetic, gas and thermodynamic modeling analyses.
    Liu J; Huang L; Sun G; Chen J; Zhuang S; Chang K; Xie W; Kuo J; He Y; Sun S; Buyukada M; Evrendilek F
    Waste Manag; 2018 Nov; 81():211-219. PubMed ID: 30527037
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Impact of blend ratio on the co-firing of a commercial torrefied biomass and coal via analysis of oxidation kinetics.
    Goldfarb JL; Liu C
    Bioresour Technol; 2013 Dec; 149():208-15. PubMed ID: 24113546
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Upgrading of banana leaf waste to produce solid biofuel by torrefaction: physicochemical properties, combustion behaviors, and potential emissions.
    Alves JLF; da Silva JCG; Sellin N; Prá FB; Sapelini C; Souza O; Marangoni C
    Environ Sci Pollut Res Int; 2022 Apr; 29(17):25733-25747. PubMed ID: 34846654
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Investigation on oxygen-controlled sewage sludge carbonization with low temperature: from thermal behavior to three-phase product properties.
    Yu F; Hu Y; Li L; Guo Q; Zhu Y; Jiao L; Wang Y; Cui X
    Environ Sci Pollut Res Int; 2022 May; 29(21):31441-31452. PubMed ID: 35006570
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Kinetic triplet of Colombian sawmill wastes using thermogravimetric analysis.
    Bonilla J; Salazar RP; Mayorga M
    Heliyon; 2019 Oct; 5(10):e02723. PubMed ID: 31720467
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.