These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
199 related articles for article (PubMed ID: 38930903)
1. Three-Dimensional Interaction Homology: Deconstructing Residue-Residue and Residue-Lipid Interactions in Membrane Proteins. Kellogg GE Molecules; 2024 Jun; 29(12):. PubMed ID: 38930903 [TBL] [Abstract][Full Text] [Related]
2. 3D interaction homology: The hydrophobic residues alanine, isoleucine, leucine, proline and valine play different structural roles in soluble and membrane proteins. Al Mughram MH; Catalano C; Herrington NB; Safo MK; Kellogg GE Front Mol Biosci; 2023; 10():1116868. PubMed ID: 37056722 [TBL] [Abstract][Full Text] [Related]
3. 3d interaction homology: The structurally known rotamers of tyrosine derive from a surprisingly limited set of information-rich hydropathic interaction environments described by maps. Ahmed MH; Koparde VN; Safo MK; Neel Scarsdale J; Kellogg GE Proteins; 2015 Jun; 83(6):1118-36. PubMed ID: 25900573 [TBL] [Abstract][Full Text] [Related]
4. 3D Interaction Homology: Computational Titration of Aspartic Acid, Glutamic Acid and Histidine Can Create pH-Tunable Hydropathic Environment Maps. Herrington NB; Kellogg GE Front Mol Biosci; 2021; 8():773385. PubMed ID: 34805282 [TBL] [Abstract][Full Text] [Related]
5. 3D interaction homology: The hydropathic interaction environments of even alanine are diverse and provide novel structural insight. Ahmed MH; Catalano C; Portillo SC; Safo MK; Neel Scarsdale J; Kellogg GE J Struct Biol; 2019 Aug; 207(2):183-198. PubMed ID: 31112746 [TBL] [Abstract][Full Text] [Related]
6. Quantitative residue-level structure-evolution relationships in the yeast membrane proteome. Franzosa EA; Xue R; Xia Y Genome Biol Evol; 2013; 5(4):734-44. PubMed ID: 23512408 [TBL] [Abstract][Full Text] [Related]
7. 3D interaction homology: Hydropathic interaction environments of serine and cysteine are strikingly different and their roles adapt in membrane proteins. Catalano C; Al Mughram MH; Guo Y; Kellogg GE Curr Res Struct Biol; 2021; 3():239-256. PubMed ID: 34693344 [TBL] [Abstract][Full Text] [Related]
8. Systematized analysis of secondary structure dependence of key structural features of residues in soluble and membrane-bound proteins. Al Mughram MH; Herrington NB; Catalano C; Kellogg GE J Struct Biol X; 2021; 5():100055. PubMed ID: 34934943 [TBL] [Abstract][Full Text] [Related]
9. Role of long- and short-range hydrophobic, hydrophilic and charged residues contact network in protein's structural organization. Sengupta D; Kundu S BMC Bioinformatics; 2012 Jun; 13():142. PubMed ID: 22720789 [TBL] [Abstract][Full Text] [Related]
10. Effects of stand-alone polar residue on membrane protein stability and structure. Chang YC; Cao Z; Chen WT; Huang WC Biochim Biophys Acta Biomembr; 2024 Jun; 1866(5):184325. PubMed ID: 38653423 [TBL] [Abstract][Full Text] [Related]
11. 3D Interaction Homology: Hydropathic Analyses of the "π-Cation" and "π-π" Interaction Motifs in Phenylalanine, Tyrosine, and Tryptophan Residues. Al Mughram MH; Catalano C; Bowry JP; Safo MK; Scarsdale JN; Kellogg GE J Chem Inf Model; 2021 Jun; 61(6):2937-2956. PubMed ID: 34101460 [TBL] [Abstract][Full Text] [Related]
12. MPRAP: an accessibility predictor for a-helical transmembrane proteins that performs well inside and outside the membrane. Illergård K; Callegari S; Elofsson A BMC Bioinformatics; 2010 Jun; 11():333. PubMed ID: 20565847 [TBL] [Abstract][Full Text] [Related]
13. An Affordable Topography-Based Protocol for Assigning a Residue's Character on a Hydropathy (PARCH) Scale. Ji J; Carpentier B; Chakraborty A; Nangia S J Chem Theory Comput; 2024 Feb; 20(4):1656-1672. PubMed ID: 37018141 [TBL] [Abstract][Full Text] [Related]
14. Hydrophobicity of transmembrane proteins: spatially profiling the distribution. Silverman BD Protein Sci; 2003 Mar; 12(3):586-99. PubMed ID: 12592029 [TBL] [Abstract][Full Text] [Related]
15. Helix-helix packing and interfacial pairwise interactions of residues in membrane proteins. Adamian L; Liang J J Mol Biol; 2001 Aug; 311(4):891-907. PubMed ID: 11518538 [TBL] [Abstract][Full Text] [Related]
16. Lipid exposure prediction enhances the inference of rotational angles of transmembrane helices. Lai JS; Cheng CW; Lo A; Sung TY; Hsu WL BMC Bioinformatics; 2013 Oct; 14():304. PubMed ID: 24112406 [TBL] [Abstract][Full Text] [Related]
17. The role of hydrophobic interactions in positioning of peripheral proteins in membranes. Lomize AL; Pogozheva ID; Lomize MA; Mosberg HI BMC Struct Biol; 2007 Jun; 7():44. PubMed ID: 17603894 [TBL] [Abstract][Full Text] [Related]
18. Energetics of side-chain partitioning of β-signal residues in unassisted folding of a transmembrane β-barrel protein. Iyer BR; Zadafiya P; Vetal PV; Mahalakshmi R J Biol Chem; 2017 Jul; 292(29):12351-12365. PubMed ID: 28592485 [TBL] [Abstract][Full Text] [Related]
19. The cost of living in the membrane: a case study of hydrophobic mismatch for the multi-segment protein LeuT. Mondal S; Khelashvili G; Shi L; Weinstein H Chem Phys Lipids; 2013 Apr; 169():27-38. PubMed ID: 23376428 [TBL] [Abstract][Full Text] [Related]
20. Computational analysis of alpha-helical membrane protein structure: implications for the prediction of 3D structural models. Eyre TA; Partridge L; Thornton JM Protein Eng Des Sel; 2004 Aug; 17(8):613-24. PubMed ID: 15388845 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]