These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 38930979)

  • 21. Screening and Molecular Identification of Bacteria from the Midgut of
    Skowronek M; Sajnaga E; Kazimierczak W; Lis M; Wiater A
    Int J Mol Sci; 2021 Nov; 22(21):. PubMed ID: 34769435
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Anti-Trypanosoma activity of bioactive metabolites from Photorhabdus luminescens and Xenorhabdus nematophila.
    Antonello AM; Sartori T; Silva MB; Prophiro JS; Pinge-Filho P; Heermann R; da Silva OS; Romão PRT
    Exp Parasitol; 2019 Sep; 204():107724. PubMed ID: 31279930
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Scavenger deterrent factor (SDF) from symbiotic bacteria of entomopathogenic nematodes.
    Gulcu B; Hazir S; Kaya HK
    J Invertebr Pathol; 2012 Jul; 110(3):326-33. PubMed ID: 22446508
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Antiprotozoal activity of different Xenorhabdus and Photorhabdus bacterial secondary metabolites and identification of bioactive compounds using the easyPACId approach.
    Gulsen SH; Tileklioglu E; Bode E; Cimen H; Ertabaklar H; Ulug D; Ertug S; Wenski SL; Touray M; Hazir C; Bilecenoglu DK; Yildiz I; Bode HB; Hazir S
    Sci Rep; 2022 Jun; 12(1):10779. PubMed ID: 35750682
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biophysical characterization of antibacterial compounds derived from pathogenic fungi Ganoderma boninense.
    Abdullah S; Oh YS; Kwak MK; Chong K
    J Microbiol; 2021 Feb; 59(2):164-174. PubMed ID: 33355891
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Antifungal activity of different Xenorhabdus and Photorhabdus species against various fungal phytopathogens and identification of the antifungal compounds from X. szentirmaii.
    Cimen H; Touray M; Gulsen SH; Erincik O; Wenski SL; Bode HB; Shapiro-Ilan D; Hazir S
    Appl Microbiol Biotechnol; 2021 Jul; 105(13):5517-5528. PubMed ID: 34250572
    [TBL] [Abstract][Full Text] [Related]  

  • 27. GC-MS analysis of volatile organic compounds from Bambara groundnut rhizobacteria and their antibacterial properties.
    Ajilogba CF; Babalola OO
    World J Microbiol Biotechnol; 2019 May; 35(6):83. PubMed ID: 31134356
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Does the Future of Antibiotics Lie in Secondary Metabolites Produced by Xenorhabdus spp.? A Review.
    Booysen E; Dicks LMT
    Probiotics Antimicrob Proteins; 2020 Dec; 12(4):1310-1320. PubMed ID: 32844362
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A Silent Operon of Photorhabdus luminescens Encodes a Prodrug Mimic of GTP.
    Shahsavari N; Wang B; Imai Y; Mori M; Son S; Liang L; Böhringer N; Manuse S; Gates MF; Morrissette M; Corsetti R; Espinoza JL; Dupont CL; Laub MT; Lewis K
    mBio; 2022 Jun; 13(3):e0070022. PubMed ID: 35575547
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bioactive metabolites of
    Abdelaziz R; Tartor YH; Barakat AB; El-Didamony G; Gado MM; Berbecea A; Radulov HDI
    Front Cell Infect Microbiol; 2023; 13():1162721. PubMed ID: 37168394
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bacteria from the Midgut of Common Cockchafer (
    Skowronek M; Sajnaga E; Pleszczyńska M; Kazimierczak W; Lis M; Wiater A
    Int J Mol Sci; 2020 Jan; 21(2):. PubMed ID: 31963214
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cyclo(tetrahydroxybutyrate) production is sufficient to distinguish between Xenorhabdus and Photorhabdus isolates in Thailand.
    Tobias NJ; Parra-Rojas C; Shi YN; Shi YM; Simonyi S; Thanwisai A; Vitta A; Chantratita N; Hernandez-Vargas EA; Bode HB
    Environ Microbiol; 2019 Aug; 21(8):2921-2932. PubMed ID: 31102315
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Natural products from Photorhabdus and Xenorhabdus: mechanisms and impacts.
    Cimen H; Touray M; Gulsen SH; Hazir S
    Appl Microbiol Biotechnol; 2022 Jun; 106(12):4387-4399. PubMed ID: 35723692
    [TBL] [Abstract][Full Text] [Related]  

  • 34.
    Abd El-Raheem AM; Abdelazeem Elmasry AM; Elbrense H; Vergara-Pineda S
    Pak J Biol Sci; 2022 Jun; 25(7):586-601. PubMed ID: 36098165
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Pyrazinone protease inhibitor metabolites from Photorhabdus luminescens.
    Park HB; Crawford JM
    J Antibiot (Tokyo); 2016 Aug; 69(8):616-21. PubMed ID: 27353165
    [TBL] [Abstract][Full Text] [Related]  

  • 36. HETERORHABDITIS BACTERIOPHORA NEMATODES ARE SENSITIVE TO THE BACTERIAL PATHOGEN PHOTORHABDUS ASYMBIOTICA.
    Kim I; Heryanto C; Eleftherianos I
    J Parasitol; 2023 Jan; 109(1):11-14. PubMed ID: 36805240
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Phospholipase A2 inhibitors synthesized by two entomopathogenic bacteria, Xenorhabdus nematophila and Photorhabdus temperata subsp. temperata.
    Seo S; Lee S; Hong Y; Kim Y
    Appl Environ Microbiol; 2012 Jun; 78(11):3816-23. PubMed ID: 22447611
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bioprospecting for secondary metabolites in the entomopathogenic bacterium Photorhabdus luminescens subsp. sonorensis.
    Orozco RA; Molnár I; Bode H; Stock SP
    J Invertebr Pathol; 2016 Nov; 141():45-52. PubMed ID: 27702563
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identification of symbiotic bacteria (Photorhabdus and Xenorhabdus) from the entomopathogenic nematodes Heterorhabditis marelatus and Steinernema oregonense based on 16S rDNA sequence.
    Liu J; Berry RE; Blouin MS
    J Invertebr Pathol; 2001 Feb; 77(2):87-91. PubMed ID: 11273687
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Discovery of an antitumor compound from xenorhabdus stockiae HN_xs01.
    Huang X; Tang Q; Liu S; Li C; Li Y; Sun Y; Ding X; Xia L; Hu S
    World J Microbiol Biotechnol; 2024 Feb; 40(3):101. PubMed ID: 38366186
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.