These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 38931527)

  • 1. Calixarene-Based Supramolecular Sensor Array for Pesticide Discrimination.
    Chen Y; Tian JH; Tian HW; Ma R; Wang ZH; Pan YC; Hu XY; Guo DS
    Sensors (Basel); 2024 Jun; 24(12):. PubMed ID: 38931527
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accelerated and precise identification of antioxidants and pesticides using a smartphone-based colorimetric sensor array.
    Luan T; Zhang Y; Song Z; Zhou Y; Ma CB; Lu L; Du Y
    Talanta; 2024 Sep; 277():126275. PubMed ID: 38810380
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A colorimetric sensor array based on sulfuric acid assisted KMnO
    Qiao L; Qian S; Wang Y; Lin H
    Talanta; 2018 May; 181():305-310. PubMed ID: 29426516
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Paper-based fluorescence sensor array with functionalized carbon quantum dots for bacterial discrimination using a machine learning algorithm.
    Wang F; Xiao M; Qi J; Zhu L
    Anal Bioanal Chem; 2024 May; 416(13):3139-3148. PubMed ID: 38632131
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Portable Sensor Array for On-Site Detection and Discrimination of Pesticides and Herbicides Using Multivariate Analysis.
    Ranbir ; Singh G; Singh H; Kaur N; Singh N
    Anal Chem; 2023 Oct; 95(39):14533-14540. PubMed ID: 37726218
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Supramolecular chemistry of p-sulfonatocalix[n]arenes and its biological applications.
    Guo DS; Liu Y
    Acc Chem Res; 2014 Jul; 47(7):1925-34. PubMed ID: 24666259
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Host-Guest Recognition of Pesticides by Calixarenes.
    Sanabria Español E; Maldonado M
    Crit Rev Anal Chem; 2019; 49(5):383-394. PubMed ID: 30753109
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Smartphone-assisted sensor array constructed by copper-based laccase-like nanozymes for specific identification and discrimination of organophosphorus pesticides.
    Song D; Tian T; Yang X; Wang L; Sun Y; Li Y; Huang H
    Food Chem; 2023 Oct; 424():136477. PubMed ID: 37263094
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel strategy for identification of pesticides in different categories by concentration-independent model based on a nanozyme with multienzyme-like activities.
    Song D; Lei L; Tian T; Yang X; Wang L; Li Y; Huang H
    Biosens Bioelectron; 2023 Oct; 237():115458. PubMed ID: 37311405
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lab-on-a-Molecule Probe: Multitarget Detection of Five Aromatic Pesticides Using a Supramolecular Probe under Single Wavelength Excitation.
    Wei KN; Song GX; Huang SZ; Tang Q; Hu JH; Tao Z; Huang Y
    J Agric Food Chem; 2022 May; 70(19):5784-5793. PubMed ID: 35506583
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Facile and selective recognition of sulfonylurea pesticides based on the multienzyme-like activities enhancement of nanozymes combining sensor array.
    Tian T; Song D; Zhang L; Huang H; Li Y
    J Hazard Mater; 2024 May; 469():133847. PubMed ID: 38422731
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrasensitive Fluorescent Microsensors Based on Aptamers Modified with SYBR Green I for Visual Quantitative Detection of Organophosphate Pesticides.
    Zhang Q; Liu A; Song X; Xu S; Da L; Lin D; Jiang C
    Anal Chem; 2024 Jun; 96(23):9636-9642. PubMed ID: 38808501
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluorescence Enhancement by Calixarene Supramolecular Aggregate.
    Hu XY; Wang YY; Li HB; Guo DS
    Molecules; 2020 Dec; 25(24):. PubMed ID: 33327371
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Smartphone-based colorimetric sensor array using gold nanoparticles for rapid distinguishment of multiple pesticides in real samples.
    Zhao T; Liang X; Guo X; Yang X; Guo J; Zhou X; Huang X; Zhang W; Wang Y; Liu Z; Jiang Z; Zhou H; Zhou H
    Food Chem; 2023 Mar; 404(Pt B):134768. PubMed ID: 36444090
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sensing parts per million levels of gaseous NO2 by a optical fiber transducer based on calix[4]arenes.
    Ohira S; Wanigasekara E; Rudkevich DM; Dasgupta PK
    Talanta; 2009 Mar; 77(5):1814-20. PubMed ID: 19159804
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enzyme-free and rapid visual quantitative detection for pesticide residues utilizing portable smartphone integrated paper sensor.
    Zhang Q; Zhang Z; Xu S; Da L; Lin D; Jiang C
    J Hazard Mater; 2022 Aug; 436():129320. PubMed ID: 35739808
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pillar[5]arene-Based Fluorescent Sensor Array for Biosensing of Intracellular Multi-neurotransmitters through Host-Guest Recognitions.
    Mei Y; Zhang QW; Gu Q; Liu Z; He X; Tian Y
    J Am Chem Soc; 2022 Feb; 144(5):2351-2359. PubMed ID: 35099950
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanoplasmonic sensor array for the detection and discrimination of pesticide residues in citrus fruits.
    Mirghafouri MR; Abbasi-Moayed S; Ghasemi F; Hormozi-Nezhad MR
    Anal Methods; 2020 Dec; 12(48):5877-5884. PubMed ID: 33283792
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aptamer-Based Fluorescent Sensor Array for Multiplexed Detection of Cyanotoxins on a Smartphone.
    Li Z; Zhang S; Yu T; Dai Z; Wei Q
    Anal Chem; 2019 Aug; 91(16):10448-10457. PubMed ID: 31192585
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Recent developments of pesticide adsorbents based on cyclodextrins].
    Zhang J; Li P; Ma J; Jia Q
    Se Pu; 2021 Feb; 39(2):173-183. PubMed ID: 34227350
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.