These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 38931567)

  • 1. Embroidery Triboelectric Nanogenerator for Energy Harvesting.
    Tahir HR; Malengier B; Sujan S; Van Langenhove L
    Sensors (Basel); 2024 Jun; 24(12):. PubMed ID: 38931567
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D Orthogonal Woven Triboelectric Nanogenerator for Effective Biomechanical Energy Harvesting and as Self-Powered Active Motion Sensors.
    Dong K; Deng J; Zi Y; Wang YC; Xu C; Zou H; Ding W; Dai Y; Gu B; Sun B; Wang ZL
    Adv Mater; 2017 Oct; 29(38):. PubMed ID: 28786510
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fiber/Yarn-Based Triboelectric Nanogenerators (TENGs): Fabrication Strategy, Structure, and Application.
    Chen Y; Ling Y; Yin R
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560085
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stretchable Woven Fabric-Based Triboelectric Nanogenerator for Energy Harvesting and Self-Powered Sensing.
    Chen L; Wang T; Shen Y; Wang F; Chen C
    Nanomaterials (Basel); 2023 Feb; 13(5):. PubMed ID: 36903740
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Shared-Electrode and Nested-Tube Structure Triboelectric Nanogenerator for Motion Energy Harvesting.
    Tian Z; Shao G; Zhang Q; Geng Y; Chen X
    Micromachines (Basel); 2019 Sep; 10(10):. PubMed ID: 31569481
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancing the Performance of Textile Triboelectric Nanogenerators with Oblique Microrod Arrays for Wearable Energy Harvesting.
    Zhang L; Su C; Cheng L; Cui N; Gu L; Qin Y; Yang R; Zhou F
    ACS Appl Mater Interfaces; 2019 Jul; 11(30):26824-26829. PubMed ID: 31271026
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A stretchable triboelectric nanogenerator made of silver-coated glass microspheres for human motion energy harvesting and self-powered sensing applications.
    Li H; Zhang Y; Wu Y; Zhao H; Wang W; He X; Zheng H
    Beilstein J Nanotechnol; 2021; 12():402-412. PubMed ID: 34012760
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Core-Sheath Fiber-Based Triboelectric Nanogenerators for Energy Harvesting and Self-Powered Straight-Arm Sit-Up Sensing.
    Yu B; Long J; Huang T; Xiang Z; Liu M; Zhang X; Zhu J; Yu H
    ACS Omega; 2023 Aug; 8(34):31427-31435. PubMed ID: 37663522
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Energy Harvester Coupled with a Triboelectric Mechanism and Electrostatic Mechanism for Biomechanical Energy Harvesting.
    Zhai L; Gao L; Wang Z; Dai K; Wu S; Mu X
    Nanomaterials (Basel); 2022 Mar; 12(6):. PubMed ID: 35335744
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flexible triboelectric nanogenerator based on polyester conductive cloth for biomechanical energy harvesting and self-powered sensors.
    Zhao J; Wang Y; Song X; Zhou A; Ma Y; Wang X
    Nanoscale; 2021 Nov; 13(43):18363-18373. PubMed ID: 34723308
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An Anthocyanin-Based Eco-Friendly Triboelectric Nanogenerator for pH Monitoring and Energy Harvesting.
    Sun W; Dong J; Li W; Gao X; Liu J; Nan D
    Molecules; 2024 Apr; 29(9):. PubMed ID: 38731417
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-Performance All-Textile Triboelectric Nanogenerator toward Intelligent Sports Sensing and Biomechanical Energy Harvesting.
    Zheng Z; Ma X; Lu M; Yin H; Jiang L; Guo Y
    ACS Appl Mater Interfaces; 2024 Feb; 16(8):10746-10755. PubMed ID: 38351572
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Scalable Textile Manufacturing Methods for Fabricating Triboelectric Nanogenerators with Balanced Electrical and Wearable Properties.
    Gunawardhana KRS; Wanasekara ND; Wijayantha KG; Dharmasena RDI
    ACS Appl Electron Mater; 2022 Feb; 4(2):678-688. PubMed ID: 35573892
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and development of a horizontal contact separated (HCS) test setup for measuring the performance of triboelectric nanogenerator for sustainable energy harvesting applications.
    Kumar S; Jha RK; Sharma P; Goswami A
    Rev Sci Instrum; 2024 Mar; 95(3):. PubMed ID: 38446004
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Robust triboelectric nanogenerator based on rolling electrification and electrostatic induction at an instantaneous energy conversion efficiency of ∼ 55%.
    Lin L; Xie Y; Niu S; Wang S; Yang PK; Wang ZL
    ACS Nano; 2015 Jan; 9(1):922-30. PubMed ID: 25555045
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-Performance Triboelectric Nanogenerators Based on Commercial Textiles: Electrospun Nylon 66 Nanofibers on Silk and PVDF on Polyester.
    Bairagi S; Khandelwal G; Karagiorgis X; Gokhool S; Kumar C; Min G; Mulvihill DM
    ACS Appl Mater Interfaces; 2022 Oct; 14(39):44591-44603. PubMed ID: 36150147
    [TBL] [Abstract][Full Text] [Related]  

  • 17. All-Cellulose Nanofiber-Based Sustainable Triboelectric Nanogenerators for Enhanced Energy Harvesting.
    Cao M; Chen Y; Sha J; Xu Y; Chen S; Xu F
    Polymers (Basel); 2024 Jun; 16(13):. PubMed ID: 39000640
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wearable Triboelectric Nanogenerator with Ground-Coupled Electrode for Biomechanical Energy Harvesting and Sensing.
    Su K; Lin X; Liu Z; Tian Y; Peng Z; Meng B
    Biosensors (Basel); 2023 May; 13(5):. PubMed ID: 37232909
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polyvinylidene Fluoride/Aromatic Hyperbranched Polyester of Third-Generation-Based Electrospun Nanofiber as a Self-Powered Triboelectric Nanogenerator for Wearable Energy Harvesting and Health Monitoring Applications.
    Gunasekhar R; Sathiyanathan P; Reza MS; Prasad G; Prabu AA; Kim H
    Polymers (Basel); 2023 May; 15(10):. PubMed ID: 37242949
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Progress on wearable triboelectric nanogenerators in shapes of fiber, yarn, and textile.
    Xiong J; Lee PS
    Sci Technol Adv Mater; 2019; 20(1):837-857. PubMed ID: 31497178
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.