BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 38931635)

  • 1. Strategies to Enrich Electrochemical Sensing Data with Analytical Relevance for Machine Learning Applications: A Focused Review.
    Kang M; Kim D; Kim J; Kim N; Lee S
    Sensors (Basel); 2024 Jun; 24(12):. PubMed ID: 38931635
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Machine learning and chemometrics for electrochemical sensors: moving forward to the future of analytical chemistry.
    Puthongkham P; Wirojsaengthong S; Suea-Ngam A
    Analyst; 2021 Oct; 146(21):6351-6364. PubMed ID: 34585185
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent Advances in Electrochemical Biosensors: Applications, Challenges, and Future Scope.
    Singh A; Sharma A; Ahmed A; Sundramoorthy AK; Furukawa H; Arya S; Khosla A
    Biosensors (Basel); 2021 Sep; 11(9):. PubMed ID: 34562926
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimisation of electrochemical sensors based on molecularly imprinted polymers: from OFAT to machine learning.
    Di Masi S; De Benedetto GE; Malitesta C
    Anal Bioanal Chem; 2024 Apr; 416(9):2261-2275. PubMed ID: 38117322
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Data-driven modeling and prediction of blood glucose dynamics: Machine learning applications in type 1 diabetes.
    Woldaregay AZ; Årsand E; Walderhaug S; Albers D; Mamykina L; Botsis T; Hartvigsen G
    Artif Intell Med; 2019 Jul; 98():109-134. PubMed ID: 31383477
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Data-Driven Virtual Sensing for Electrochemical Sensors.
    Sangiorgi L; Sberveglieri V; Carnevale C; De Nardi S; Nunez-Carmona E; Raccagni S
    Sensors (Basel); 2024 Feb; 24(5):. PubMed ID: 38474932
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ensemble machine learning model trained on a new synthesized dataset generalizes well for stress prediction using wearable devices.
    Vos G; Trinh K; Sarnyai Z; Rahimi Azghadi M
    J Biomed Inform; 2023 Dec; 148():104556. PubMed ID: 38048895
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A machine learning-based multimodal electrochemical analytical device based on eMoS
    Kammarchedu V; Butler D; Ebrahimi A
    Anal Chim Acta; 2022 Nov; 1232():340447. PubMed ID: 36257734
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrochemical Sensor to Detect Antibiotics in Milk Based on Machine Learning Algorithms.
    Aliev TA; Belyaev VE; Pomytkina AV; Nesterov PV; Shityakov S; Sadovnichii RV; Novikov AS; Orlova OY; Masalovich MS; Skorb EV
    ACS Appl Mater Interfaces; 2023 Oct; ():. PubMed ID: 37874132
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comprehensive review of machine learning techniques for multi-omics data integration: challenges and applications in precision oncology.
    Acharya D; Mukhopadhyay A
    Brief Funct Genomics; 2024 Apr; ():. PubMed ID: 38600757
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication strategies, sensing modes and analytical applications of ratiometric electrochemical biosensors.
    Jin H; Gui R; Yu J; Lv W; Wang Z
    Biosens Bioelectron; 2017 May; 91():523-537. PubMed ID: 28086123
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A bacterial sensor taxonomy across earth ecosystems for machine learning applications.
    Park H; Joachimiak MP; Jungbluth SP; Yang Z; Riehl WJ; Canon RS; Arkin AP; Dehal PS
    mSystems; 2024 Jan; 9(1):e0002623. PubMed ID: 38078749
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unlocking the full power of electrochemical fingerprinting for on-site sensing applications.
    Moro G; Barich H; Driesen K; Felipe Montiel N; Neven L; Domingues Mendonça C; Thiruvottriyur Shanmugam S; Daems E; De Wael K
    Anal Bioanal Chem; 2020 Sep; 412(24):5955-5968. PubMed ID: 32248394
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multisensor Systems by Electrochemical Nanowire Assembly for the Analysis of Aqueous Solutions.
    Nikolaev KG; Ermolenko YE; Offenhäusser A; Ermakov SS; Mourzina YG
    Front Chem; 2018; 6():256. PubMed ID: 30009159
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Leveraging electrochemical sensors to improve efficiency of cancer detection.
    Fu L; Karimi-Maleh H
    World J Clin Oncol; 2024 Mar; 15(3):360-366. PubMed ID: 38576591
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Materials Approaches for Improving Electrochemical Sensor Performance.
    Beaver K; Dantanarayana A; Minteer SD
    J Phys Chem B; 2021 Nov; 125(43):11820-11834. PubMed ID: 34677956
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generalizable machine learning for stress monitoring from wearable devices: A systematic literature review.
    Vos G; Trinh K; Sarnyai Z; Rahimi Azghadi M
    Int J Med Inform; 2023 May; 173():105026. PubMed ID: 36893657
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Machine Learning-Enhanced Flexible Mechanical Sensing.
    Wang Y; Adam ML; Zhao Y; Zheng W; Gao L; Yin Z; Zhao H
    Nanomicro Lett; 2023 Feb; 15(1):55. PubMed ID: 36800133
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ionic liquids as green solvents and electrolytes for robust chemical sensor development.
    Rehman A; Zeng X
    Acc Chem Res; 2012 Oct; 45(10):1667-77. PubMed ID: 22891895
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.