These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 38931635)

  • 21. Development of surface molecular-imprinted electrochemical sensor for palmitic acid with machine learning assistance.
    Zhang H; Luo B; Liu K; Wang C; Hou P; Zhao C; Li A
    Talanta; 2024 Aug; 275():126124. PubMed ID: 38663067
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Practical foundations of machine learning for addiction research. Part II. Workflow and use cases.
    Cresta Morgado P; Carusso M; Alonso Alemany L; Acion L
    Am J Drug Alcohol Abuse; 2022 May; 48(3):272-283. PubMed ID: 35390266
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Advances in wearable electrochemical antibody-based sensors for cortisol sensing.
    Khumngern S; Jeerapan I
    Anal Bioanal Chem; 2023 Jul; 415(18):3863-3877. PubMed ID: 36781449
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Recent Advances in the Development of Portable Electrochemical Sensors for Controlled Substances.
    Dai Z
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991851
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Addressing annotation and data scarcity when designing machine learning strategies for neurophotonics.
    Bouchard C; Bernatchez R; Lavoie-Cardinal F
    Neurophotonics; 2023 Oct; 10(4):044405. PubMed ID: 37636490
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Chemical Gas Sensors: Recent Developments, Challenges, and the Potential of Machine Learning-A Review.
    Yaqoob U; Younis MI
    Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33923937
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Perspective on "in the wild" movement analysis using machine learning.
    Dorschky E; Camomilla V; Davis J; Federolf P; Reenalda J; Koelewijn AD
    Hum Mov Sci; 2023 Feb; 87():103042. PubMed ID: 36493569
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Polyelectrolytes Assembly: A Powerful Tool for Electrochemical Sensing Application.
    Škugor Rončević I; Krivić D; Buljac M; Vladislavić N; Buzuk M
    Sensors (Basel); 2020 Jun; 20(11):. PubMed ID: 32517055
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A Review on Recent Advances in the Applications of Boron-Doped Diamond Electrochemical Sensors in Food Analysis.
    Sarakhman O; Švorc Ľ
    Crit Rev Anal Chem; 2022; 52(4):791-813. PubMed ID: 33028086
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Electrochemical Sensing Systems for the Analysis of Catechol and Hydroquinone in the Aquatic Environments: A Critical Review.
    Meskher H; Achi F
    Crit Rev Anal Chem; 2024 Aug; 54(5):1354-1367. PubMed ID: 36007064
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Concepts and methods for transcriptome-wide prediction of chemical messenger RNA modifications with machine learning.
    Acera Mateos P; Zhou Y; Zarnack K; Eyras E
    Brief Bioinform; 2023 May; 24(3):. PubMed ID: 37139545
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Machine Learning Methods of Regression for Plasmonic Nanoantenna Glucose Sensing.
    Corcione E; Pfezer D; Hentschel M; Giessen H; Tarín C
    Sensors (Basel); 2021 Dec; 22(1):. PubMed ID: 35009555
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Rational design of hybrid sensor arrays combined synergistically with machine learning for rapid response to a hazardous gas leak environment in chemical plants.
    Ku W; Lee G; Lee JY; Kim DH; Park KH; Lim J; Cho D; Ha SC; Jung BG; Hwang H; Lee W; Shin H; Jang HS; Lee JO; Hwang JH
    J Hazard Mater; 2024 Mar; 466():133649. PubMed ID: 38310842
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Survey of Transfer Learning Approaches in the Machine Learning of Digital Health Sensing Data.
    Chato L; Regentova E
    J Pers Med; 2023 Dec; 13(12):. PubMed ID: 38138930
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Recent Advances in the Machine Learning-Based Drug-Target Interaction Prediction.
    Zhang W; Lin W; Zhang D; Wang S; Shi J; Niu Y
    Curr Drug Metab; 2019; 20(3):194-202. PubMed ID: 30129407
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electrochemical Methods in the Cloud: FreiStat, an IoT-Enabled Embedded Potentiostat.
    Bill D; Jasper M; Weltin A; Urban GA; Rupitsch SJ; Kieninger J
    Anal Chem; 2023 Sep; 95(35):13003-13009. PubMed ID: 37582246
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparison of machine learning techniques for the identification of human activities from inertial sensors available in a mobile device after the application of data imputation techniques.
    Pires IM; Hussain F; Marques G; Garcia NM
    Comput Biol Med; 2021 Aug; 135():104638. PubMed ID: 34256257
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Electrochemical sensing of B-complex vitamins: current challenges and future prospects with microfluidic integration.
    Pakeeza ; Draz MU; Yaqub A; Jafry AT; Khan M; Ajab H
    RSC Adv; 2024 Mar; 14(15):10331-10347. PubMed ID: 38549795
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Advancement in electrochemical strategies for quantification of Brown HT and Carmoisine (Acid Red 14) From Azo Dyestuff class.
    Karimi F; Demir E; Aydogdu N; Shojaei M; Taher MA; Asrami PN; Alizadeh M; Ghasemi Y; Cheraghi S
    Food Chem Toxicol; 2022 Jul; 165():113075. PubMed ID: 35487338
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Microscale, Electrochemical, Aptamer-Based Sensors for Enhanced Small-Molecule Detection at Millisecond Time Scales.
    Kumakli H; Baldwin M; Abeykoon SW; White RJ
    ACS Sens; 2023 Dec; 8(12):4521-4530. PubMed ID: 38104257
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.