These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 38931639)

  • 1. Optimizing Occupant Comfort in a Room Using the Predictive Control Model as a Thermal Control Strategy.
    Boicu MG; Stamatescu G; Făgărăşan I; Vasluianu M; Neculoiu G; Dobrea MA
    Sensors (Basel); 2024 Jun; 24(12):. PubMed ID: 38931639
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Entropy generation method to quantify thermal comfort.
    Boregowda SC; Tiwari SN; Chaturvedi SK
    Hum Perf Extrem Environ; 2001 Dec; 6(1):40-5. PubMed ID: 12182196
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rethinking indoor thermal comfort in the era of rebound and pre-bound effect for the developing world: A systematic review.
    Malik J; Bardhan R; Banerji P
    Indoor Air; 2020 May; 30(3):377-395. PubMed ID: 32149411
    [TBL] [Abstract][Full Text] [Related]  

  • 4. BIM and Data-Driven Predictive Analysis of Optimum Thermal Comfort for Indoor Environment.
    Gan VJL; Luo H; Tan Y; Deng M; Kwok HL
    Sensors (Basel); 2021 Jun; 21(13):. PubMed ID: 34199042
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fuzzy Logic Controlled Simulation in Regulating Thermal Comfort and Indoor Air Quality Using a Vehicle Heating, Ventilation, and Air-Conditioning System.
    Rajeswari Subramaniam K; Cheng CT; Pang TY
    Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772432
    [TBL] [Abstract][Full Text] [Related]  

  • 6. IoT Operating System Based Fuzzy Inference System for Home Energy Management System in Smart Buildings.
    ; Iqbal S; Khan SA; Malik AW; Ahmad I; Javaid N
    Sensors (Basel); 2018 Aug; 18(9):. PubMed ID: 30149631
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the Use of Windcatchers in Schools: Climate Change, Occupancy Patterns, and Adaptation Strategies.
    Mavrogianni A; Mumovic D
    Indoor Built Environ; 2010 Jun; 19(3):340-354. PubMed ID: 27110216
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancing Occupant Comfort and Building Sustainability: Lessons from an Internet of Things-Based Study on Centrally Controlled Indoor Shared Spaces in Hot Climatic Conditions.
    Kulkarni P; Pradeep B; Yusuf R; Alexander H; ElSayed H
    Sensors (Basel); 2024 Feb; 24(5):. PubMed ID: 38474942
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancing thermal comfort prediction in high-speed trains through machine learning and physiological signals integration.
    Zhou W; Yang M; Yu X; Peng Y; Fan C; Xu D; Xiao Q
    J Therm Biol; 2024 Apr; 121():103828. PubMed ID: 38604115
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study of Human Thermal Comfort for Cyber-Physical Human Centric System in Smart Homes.
    Fang Y; Lim Y; Ooi SE; Zhou C; Tan Y
    Sensors (Basel); 2020 Jan; 20(2):. PubMed ID: 31936499
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cyber-Enabled Optimization of HVAC System Control in Open Space of Office Building.
    Peng B; Hsieh SJ
    Sensors (Basel); 2023 May; 23(10):. PubMed ID: 37430770
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of occupant presence patterns on energy consumption and its relation to comfort: a case study based on sensor and crowd-sensed data.
    Rusek R; Melendez Frigola J; Colomer Llinas J
    Energy Sustain Soc; 2022; 12(1):13. PubMed ID: 35223362
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wireless, AI-enabled wearable thermal comfort sensor for energy-efficient, human-in-the-loop control of indoor temperature.
    Cho S; Nam HJ; Shi C; Kim CY; Byun SH; Agno KC; Lee BC; Xiao J; Sim JY; Jeong JW
    Biosens Bioelectron; 2023 Mar; 223():115018. PubMed ID: 36549111
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of the Visual Stimuli on Personal Thermal Comfort Perception in Real and Virtual Environments Using Machine Learning Approaches.
    Salamone F; Bellazzi A; Belussi L; Damato G; Danza L; Dell'Aquila F; Ghellere M; Megale V; Meroni I; Vitaletti W
    Sensors (Basel); 2020 Mar; 20(6):. PubMed ID: 32183327
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mitigating the negative impact of new buildings on existing buildings' user comfort-a case study analysis.
    Rajus VS; Risopatron NA; O'Brien W; Wainer G; Fai S
    Simulation; 2023 Nov; 99(11):1095-1115. PubMed ID: 37868334
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of neighborhood building density, height, greenspace, and cleanliness on indoor environment and health of building occupants.
    Chan IYS; Liu AMM
    Build Environ; 2018 Nov; 145():213-222. PubMed ID: 32287986
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Consumption Optimization in an Office Building Considering Flexible Loads and User Comfort.
    Khorram M; Faria P; Abrishambaf O; Vale Z
    Sensors (Basel); 2020 Jan; 20(3):. PubMed ID: 31973147
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An Improved Optimization Function to Integrate the User's Comfort Perception into a Smart Home Controller Based on Particle Swarm Optimization and Fuzzy Logic.
    Costa JRD; Barroso GC; Souza DA; Batista JG; Souza Junior AB; Rios CSDN; Vasconcelos FJS; Júnior JNDN; Bezerra IS; Lima AF; Santana KA; Oliveira Júnior JR
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991733
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Machine learning algorithms applied to a prediction of personal overall thermal comfort using skin temperatures and occupants' heating behavior.
    Katić K; Li R; Zeiler W
    Appl Ergon; 2020 May; 85():103078. PubMed ID: 32174366
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Smart Fuzzy Petri Net-Based Temperature Control Framework for Reducing Building Energy Consumption.
    Deabes W; Bouazza KE; Algthami W
    Sensors (Basel); 2023 Jun; 23(13):. PubMed ID: 37447834
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.