These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 38931693)

  • 1. Adversarial Robustness Enhancement for Deep Learning-Based Soft Sensors: An Adversarial Training Strategy Using Historical Gradients and Domain Adaptation.
    Guo R; Chen Q; Liu H; Wang W
    Sensors (Basel); 2024 Jun; 24(12):. PubMed ID: 38931693
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Boosting adversarial robustness via self-paced adversarial training.
    He L; Ai Q; Yang X; Ren Y; Wang Q; Xu Z
    Neural Netw; 2023 Oct; 167():706-714. PubMed ID: 37729786
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancing robustness in video recognition models: Sparse adversarial attacks and beyond.
    Mu R; Marcolino L; Ni Q; Ruan W
    Neural Netw; 2024 Mar; 171():127-143. PubMed ID: 38091756
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Meta Invariance Defense Towards Generalizable Robustness to Unknown Adversarial Attacks.
    Zhang L; Zhou Y; Yang Y; Gao X
    IEEE Trans Pattern Anal Mach Intell; 2024 Oct; 46(10):6669-6687. PubMed ID: 38587963
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fast Adversarial Training With Adaptive Step Size.
    Huang Z; Fan Y; Liu C; Zhang W; Zhang Y; Salzmann M; Susstrunk S; Wang J
    IEEE Trans Image Process; 2023; 32():6102-6114. PubMed ID: 37883291
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantifying the Preferential Direction of the Model Gradient in Adversarial Training With Projected Gradient Descent.
    Lanfredi RB; Schroeder JD; Tasdizen T
    Pattern Recognit; 2023 Jul; 139():. PubMed ID: 37089791
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Robust Medical Diagnosis: A Novel Two-Phase Deep Learning Framework for Adversarial Proof Disease Detection in Radiology Images.
    Haque SBU; Zafar A
    J Imaging Inform Med; 2024 Feb; 37(1):308-338. PubMed ID: 38343214
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Towards evaluating the robustness of deep diagnostic models by adversarial attack.
    Xu M; Zhang T; Li Z; Liu M; Zhang D
    Med Image Anal; 2021 Apr; 69():101977. PubMed ID: 33550005
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of GAN-Based Model for Adversarial Training.
    Zhao W; Mahmoud QH; Alwidian S
    Sensors (Basel); 2023 Mar; 23(5):. PubMed ID: 36904900
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toward Intrinsic Adversarial Robustness Through Probabilistic Training.
    Dong J; Yang L; Wang Y; Xie X; Lai J
    IEEE Trans Image Process; 2023; 32():3862-3872. PubMed ID: 37428673
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adversarial Robustness of Deep Reinforcement Learning Based Dynamic Recommender Systems.
    Wang S; Cao Y; Chen X; Yao L; Wang X; Sheng QZ
    Front Big Data; 2022; 5():822783. PubMed ID: 35592793
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Untargeted white-box adversarial attack to break into deep leaning based COVID-19 monitoring face mask detection system.
    Sheikh BUH; Zafar A
    Multimed Tools Appl; 2023 May; ():1-27. PubMed ID: 37362697
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving Adversarial Robustness of Deep Neural Networks via Adaptive Margin Evolution.
    Ma L; Liang L
    Neurocomputing (Amst); 2023 Sep; 551():. PubMed ID: 37587916
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving Fast Adversarial Training With Prior-Guided Knowledge.
    Jia X; Zhang Y; Wei X; Wu B; Ma K; Wang J; Cao X
    IEEE Trans Pattern Anal Mach Intell; 2024 Sep; 46(9):6367-6383. PubMed ID: 38530739
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Towards Adversarial Robustness in Unlabeled Target Domains.
    Zhang J; Chao H; Yan P
    IEEE Trans Image Process; 2023 Feb; PP():. PubMed ID: 37022907
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Towards improving fast adversarial training in multi-exit network.
    Chen S; Shen H; Wang R; Wang X
    Neural Netw; 2022 Jun; 150():1-11. PubMed ID: 35279625
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improving Adversarial Robustness via Attention and Adversarial Logit Pairing.
    Li X; Goodman D; Liu J; Wei T; Dou D
    Front Artif Intell; 2021; 4():752831. PubMed ID: 35156010
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Machine learning through cryptographic glasses: combating adversarial attacks by key-based diversified aggregation.
    Taran O; Rezaeifar S; Holotyak T; Voloshynovskiy S
    EURASIP J Inf Secur; 2020; 2020(1):10. PubMed ID: 32685910
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Generalizable and Discriminative Representations for Adversarially Robust Few-Shot Learning.
    Dong J; Wang Y; Xie X; Lai J; Ong YS
    IEEE Trans Neural Netw Learn Syst; 2024 Mar; PP():. PubMed ID: 38536695
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Removing Adversarial Noise in X-ray Images via Total Variation Minimization and Patch-Based Regularization for Robust Deep Learning-based Diagnosis.
    Sheikh BUH; Zafar A
    J Imaging Inform Med; 2024 Dec; 37(6):3282-3303. PubMed ID: 38886292
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.