BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 38931748)

  • 1. Robot Learning Method for Human-like Arm Skills Based on the Hybrid Primitive Framework.
    Li J; Han H; Hu J; Lin J; Li P
    Sensors (Basel); 2024 Jun; 24(12):. PubMed ID: 38931748
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Improvement of Robot Stiffness-Adaptive Skill Primitive Generalization Using the Surface Electromyography in Human-Robot Collaboration.
    Guan Y; Wang N; Yang C
    Front Neurosci; 2021; 15():694914. PubMed ID: 34594181
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Robot complex motion learning based on unsupervised trajectory segmentation and movement primitives.
    Song C; Liu G; Zhang X; Zang X; Xu C; Zhao J
    ISA Trans; 2020 Feb; 97():325-335. PubMed ID: 31395285
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Task-Learning Strategy for Robotic Assembly Tasks from Human Demonstrations.
    Ding G; Liu Y; Zang X; Zhang X; Liu G; Zhao J
    Sensors (Basel); 2020 Sep; 20(19):. PubMed ID: 32992888
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Framework for Composite Layup Skill Learning and Generalizing Through Teleoperation.
    Si W; Wang N; Li Q; Yang C
    Front Neurorobot; 2022; 16():840240. PubMed ID: 35250529
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Robot Learning System Based on Adaptive Neural Control and Dynamic Movement Primitives.
    Yang C; Chen C; He W; Cui R; Li Z
    IEEE Trans Neural Netw Learn Syst; 2019 Mar; 30(3):777-787. PubMed ID: 30047914
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction learning control with movement primitives for lower limb exoskeleton.
    Wang J; Wu D; Gao Y; Dong W
    Front Neurorobot; 2022; 16():1086578. PubMed ID: 36605521
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A User Study on Robot Skill Learning Without a Cost Function: Optimization of Dynamic Movement Primitives via Naive User Feedback.
    Vollmer AL; Hemion NJ
    Front Robot AI; 2018; 5():77. PubMed ID: 33500956
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ontology based autonomous robot task processing framework.
    Ge Y; Zhang S; Cai Y; Lu T; Wang H; Hui X; Wang S
    Front Neurorobot; 2024; 18():1401075. PubMed ID: 38774519
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phase-Synchronized Learning of Periodic Compliant Movement Primitives (P-CMPs).
    Petrič T
    Front Neurorobot; 2020; 14():599889. PubMed ID: 33281594
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Research on Human-Robot Collaboration Method for Parallel Robots Oriented to Segment Docking.
    Sun D; Wang J; Xu Z; Bao J; Lu H
    Sensors (Basel); 2024 Mar; 24(6):. PubMed ID: 38544010
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modified Dynamic Movement Primitives: Robot Trajectory Planning and Force Control Under Curved Surface Constraints.
    Han L; Yuan H; Xu W; Huang Y
    IEEE Trans Cybern; 2023 Jul; 53(7):4245-4258. PubMed ID: 35333729
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Discovery and recognition of motion primitives in human activities.
    Sanzari M; Ntouskos V; Pirri F
    PLoS One; 2019; 14(4):e0214499. PubMed ID: 30933990
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MACOP modular architecture with control primitives.
    Waegeman T; Hermans M; Schrauwen B
    Front Comput Neurosci; 2013; 7():99. PubMed ID: 23888140
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generating Pointing Motions for a Humanoid Robot by Combining Motor Primitives.
    Tieck JCV; Schnell T; Kaiser J; Mauch F; Roennau A; Dillmann R
    Front Neurorobot; 2019; 13():77. PubMed ID: 31619981
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Learned parametrized dynamic movement primitives with shared synergies for controlling robotic and musculoskeletal systems.
    Rückert E; d'Avella A
    Front Comput Neurosci; 2013; 7():138. PubMed ID: 24146647
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Research on Robot Screwing Skill Method Based on Demonstration Learning.
    Li F; Bai Y; Zhao M; Fu T; Men Y; Song R
    Sensors (Basel); 2023 Dec; 24(1):. PubMed ID: 38202883
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Model-Free Primitive-Based Iterative Learning Control Approach to Trajectory Tracking of MIMO Systems With Experimental Validation.
    Radac MB; Precup RE; Petriu EM
    IEEE Trans Neural Netw Learn Syst; 2015 Nov; 26(11):2925-38. PubMed ID: 26285221
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human-like acceleration and deceleration control of a robot astronaut floating in a space station.
    Shen M; Huang X; Zhao Y; Wang Y; Li H; Jiang Z
    ISA Trans; 2024 May; 148():397-411. PubMed ID: 38458904
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetic Algorithm-Based Trajectory Optimization for Digital Twin Robots.
    Liu X; Jiang D; Tao B; Jiang G; Sun Y; Kong J; Tong X; Zhao G; Chen B
    Front Bioeng Biotechnol; 2021; 9():793782. PubMed ID: 35083202
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.