BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 38931756)

  • 1. Evaluating the Electroencephalographic Signal Quality of an In-Ear Wearable Device.
    Pazuelo J; Juez JY; Moumane H; Pyrzowski J; Mayor L; Segura-Quijano FE; Valderrama M; Le Van Quyen M
    Sensors (Basel); 2024 Jun; 24(12):. PubMed ID: 38931756
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The in-the-ear recording concept: user-centered and wearable brain monitoring.
    Looney D; Kidmose P; Park C; Ungstrup M; Rank M; Rosenkranz K; Mandic D
    IEEE Pulse; 2012; 3(6):32-42. PubMed ID: 23247157
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hearables: Automatic Overnight Sleep Monitoring With Standardized In-Ear EEG Sensor.
    Nakamura T; Alqurashi YD; Morrell MJ; Mandic DP
    IEEE Trans Biomed Eng; 2020 Jan; 67(1):203-212. PubMed ID: 31021747
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wearable In-Ear Encephalography Sensor for Monitoring Sleep. Preliminary Observations from Nap Studies.
    Looney D; Goverdovsky V; Rosenzweig I; Morrell MJ; Mandic DP
    Ann Am Thorac Soc; 2016 Dec; 13(12):2229-2233. PubMed ID: 27684316
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Visual seizure annotation and automated seizure detection using behind-the-ear electroencephalographic channels.
    Vandecasteele K; De Cooman T; Dan J; Cleeren E; Van Huffel S; Hunyadi B; Van Paesschen W
    Epilepsia; 2020 Apr; 61(4):766-775. PubMed ID: 32160324
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wireless User-Generic Ear EEG.
    Kaveh R; Doong J; Zhou A; Schwendeman C; Gopalan K; Burghardt FL; Arias AC; Maharbiz MM; Muller R
    IEEE Trans Biomed Circuits Syst; 2020 Aug; 14(4):727-737. PubMed ID: 32746342
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sleep-wake recording of forty day duration using subcutaneous electrodes.
    Kamphuisen HA; van Dulken H; Janssen AJ; Huyser WW; van Sweden B; Kemp B; Kramer CG
    Epilepsia; 1991; 32(3):347-50. PubMed ID: 2044497
    [No Abstract]   [Full Text] [Related]  

  • 8. Ear-EEG-based sleep scoring in epilepsy: A comparison with scalp-EEG.
    Jørgensen SD; Zibrandtsen IC; Kjaer TW
    J Sleep Res; 2020 Dec; 29(6):e12921. PubMed ID: 31621976
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Brain Wearables: Validation Toolkit for Ear-Level EEG Sensors.
    Correia G; Crosse MJ; Lopez Valdes A
    Sensors (Basel); 2024 Feb; 24(4):. PubMed ID: 38400384
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automatic sleep staging using ear-EEG.
    Mikkelsen KB; Villadsen DB; Otto M; Kidmose P
    Biomed Eng Online; 2017 Sep; 16(1):111. PubMed ID: 28927417
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wearable electroencephalography. What is it, why is it needed, and what does it entail?
    Casson A; Yates D; Smith S; Duncan J; Rodriguez-Villegas E
    IEEE Eng Med Biol Mag; 2010; 29(3):44-56. PubMed ID: 20659857
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dry-Contact Electrode Ear-EEG.
    Kappel SL; Rank ML; Toft HO; Andersen M; Kidmose P
    IEEE Trans Biomed Eng; 2019 Jan; 66(1):150-158. PubMed ID: 29993415
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Wearable In-Ear EEG Device for Emotion Monitoring.
    Athavipach C; Pan-Ngum S; Israsena P
    Sensors (Basel); 2019 Sep; 19(18):. PubMed ID: 31533329
    [TBL] [Abstract][Full Text] [Related]  

  • 14. From Scalp to Ear-EEG: A Generalizable Transfer Learning Model for Automatic Sleep Scoring in Older People.
    Hammour G; Davies H; Atzori G; Della Monica C; Ravindran KKG; Revell V; Dijk DJ; Mandic DP
    IEEE J Transl Eng Health Med; 2024; 12():448-456. PubMed ID: 38765887
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface Potential Simulation and Electrode Design for in-Ear EEG Measurement.
    Das A; Basu S; A A; Gubbi J; Muralidharan K; S M; S M; Biradar A; Pradhan U; Chakravarty T; Ramakrishnan RK; Pal A
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():937-940. PubMed ID: 36086437
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison between Scalp EEG and Behind-the-Ear EEG for Development of a Wearable Seizure Detection System for Patients with Focal Epilepsy.
    Gu Y; Cleeren E; Dan J; Claes K; Van Paesschen W; Van Huffel S; Hunyadi B
    Sensors (Basel); 2017 Dec; 18(1):. PubMed ID: 29295522
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Signal Quality Investigation of a New Wearable Frontal Lobe EEG Device.
    Gao Z; Cui X; Wan W; Qin Z; Gu Z
    Sensors (Basel); 2022 Feb; 22(5):. PubMed ID: 35271044
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ear-EEG detects ictal and interictal abnormalities in focal and generalized epilepsy - A comparison with scalp EEG monitoring.
    Zibrandtsen IC; Kidmose P; Christensen CB; Kjaer TW
    Clin Neurophysiol; 2017 Dec; 128(12):2454-2461. PubMed ID: 29096220
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Feasibility and Utility of Continuous Sleep Monitoring in Critically Ill Patients Using a Portable Electroencephalography Monitor.
    Vacas S; McInrue E; Gropper MA; Maze M; Zak R; Lim E; Leung JM
    Anesth Analg; 2016 Jul; 123(1):206-12. PubMed ID: 27159066
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Event-Related Potentials Measured From In and Around the Ear Electrodes Integrated in a Live Hearing Device for Monitoring Sound Perception.
    Denk F; Grzybowski M; Ernst SMA; Kollmeier B; Debener S; Bleichner MG
    Trends Hear; 2018; 22():2331216518788219. PubMed ID: 30022733
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.