These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 38931758)

  • 1. SnowMotion: A Wearable Sensor-Based Mobile Platform for Alpine Skiing Technique Assistance.
    Tang W; Suo X; Wang X; Shan B; Li L; Liu Y
    Sensors (Basel); 2024 Jun; 24(12):. PubMed ID: 38931758
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Potential of IMU Sensors in Performance Analysis of Professional Alpine Skiers.
    Yu G; Jang YJ; Kim J; Kim JH; Kim HY; Kim K; Panday SB
    Sensors (Basel); 2016 Apr; 16(4):463. PubMed ID: 27043579
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proposal of an Alpine Skiing Kinematic Analysis with the Aid of Miniaturized Monitoring Sensors, a Pilot Study.
    Russo C; Puppo E; Roati S; Somà A
    Sensors (Basel); 2022 Jun; 22(11):. PubMed ID: 35684907
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomechanical factors influencing the performance of elite Alpine ski racers.
    Hébert-Losier K; Supej M; Holmberg HC
    Sports Med; 2014 Apr; 44(4):519-33. PubMed ID: 24374655
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Connected skiing: Validation of edge angle and radial force estimation as motion quality parameters during alpine skiing.
    Snyder C; Martinez A; Strutzenberger G; Stöggl T
    Eur J Sport Sci; 2022 Oct; 22(10):1484-1492. PubMed ID: 34429026
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimation of alpine skier posture using machine learning techniques.
    Nemec B; Petrič T; Babič J; Supej M
    Sensors (Basel); 2014 Oct; 14(10):18898-914. PubMed ID: 25313492
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cross-Country Skiing Analysis and Ski Technique Detection by High-Precision Kinematic Global Navigation Satellite System.
    Takeda M; Miyamoto N; Endo T; Ohtonen O; Lindinger S; Linnamo V; Stöggl T
    Sensors (Basel); 2019 Nov; 19(22):. PubMed ID: 31766257
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental Validation of Real-Time Ski Jumping Tracking System Based on Wearable Sensors.
    Link J; Guillaume S; Eskofier BM
    Sensors (Basel); 2021 Nov; 21(23):. PubMed ID: 34883784
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Inertial Sensor-Based Method for Estimating the Athlete's Relative Joint Center Positions and Center of Mass Kinematics in Alpine Ski Racing.
    Fasel B; Spörri J; Schütz P; Lorenzetti S; Aminian K
    Front Physiol; 2017; 8():850. PubMed ID: 29163196
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automatic Classification of Sub-Techniques in Classical Cross-Country Skiing Using a Machine Learning Algorithm on Micro-Sensor Data.
    Rindal OMH; Seeberg TM; Tjønnås J; Haugnes P; Sandbakk Ø
    Sensors (Basel); 2017 Dec; 18(1):. PubMed ID: 29283421
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Collecting Kinematic Data on a Ski Track with Optoelectronic Stereophotogrammetry: A Methodological Study Assessing the Feasibility of Bringing the Biomechanics Lab to the Field.
    Spörri J; Schiefermüller C; Müller E
    PLoS One; 2016; 11(8):e0161757. PubMed ID: 27560498
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Connected Skiing: Motion Quality Quantification in Alpine Skiing.
    Snyder C; Martínez A; Jahnel R; Roe J; Stöggl T
    Sensors (Basel); 2021 May; 21(11):. PubMed ID: 34072526
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of a full body inertial measurement system in alpine skiing: a comparison with an optical video based system.
    Krüger A; Edelmann-Nusser J
    J Appl Biomech; 2010 Nov; 26(4):516-21. PubMed ID: 21245513
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cross-country skiing movement factorization to explore relationships between skiing economy and athletes' skills.
    Pellegrini B; Zoppirolli C; Boccia G; Bortolan L; Schena F
    Scand J Med Sci Sports; 2018 Feb; 28(2):565-574. PubMed ID: 28649805
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optically Non-Contact Cross-Country Skiing Action Recognition Based on Key-Point Collaborative Estimation and Motion Feature Extraction.
    Qi J; Li D; He J; Wang Y
    Sensors (Basel); 2023 Mar; 23(7):. PubMed ID: 37050699
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomechanical analysis of cross-country skiing techniques.
    Smith GA
    Med Sci Sports Exerc; 1992 Sep; 24(9):1015-22. PubMed ID: 1406185
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomechanics of crosscountry skiing.
    Smith GA
    Sports Med; 1990 May; 9(5):273-85. PubMed ID: 2188330
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wearable electronic devices in parasports: A focused review on para athlete classification.
    Nikolis L; Graff C; Nikolis A; Tow S
    PM R; 2024 Apr; 16(4):404-408. PubMed ID: 38366797
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dependence of ski jump length on the skier's body pose at the beginning of take-off.
    Zanevskyy I; Banakh V
    Acta Bioeng Biomech; 2010; 12(4):79-87. PubMed ID: 21361260
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An inertial sensor-based system for spatio-temporal analysis in classic cross-country skiing diagonal technique.
    Fasel B; Favre J; Chardonnens J; Gremion G; Aminian K
    J Biomech; 2015 Sep; 48(12):3199-205. PubMed ID: 26209087
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.