BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 38931767)

  • 1. Globally Guided Deep V-Network-Based Motion Planning Algorithm for Fixed-Wing Unmanned Aerial Vehicles.
    Du H; You M; Zhao X
    Sensors (Basel); 2024 Jun; 24(12):. PubMed ID: 38931767
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multi-UAV simultaneous target assignment and path planning based on deep reinforcement learning in dynamic multiple obstacles environments.
    Kong X; Zhou Y; Li Z; Wang S
    Front Neurorobot; 2023; 17():1302898. PubMed ID: 38318422
    [TBL] [Abstract][Full Text] [Related]  

  • 3. APPA-3D: an autonomous 3D path planning algorithm for UAVs in unknown complex environments.
    Wang J; Zhao Z; Qu J; Chen X
    Sci Rep; 2024 Jan; 14(1):1231. PubMed ID: 38216719
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Autonomous localized path planning algorithm for UAVs based on TD3 strategy.
    Feiyu Z; Dayan L; Zhengxu W; Jianlin M; Niya W
    Sci Rep; 2024 Jan; 14(1):763. PubMed ID: 38191590
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Starling-Behavior-Inspired Flocking Control of Fixed-Wing Unmanned Aerial Vehicle Swarm in Complex Environments with Dynamic Obstacles.
    Wu W; Zhang X; Miao Y
    Biomimetics (Basel); 2022 Nov; 7(4):. PubMed ID: 36546914
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D Global Path Planning Optimization for Cellular-Connected UAVs under Link Reliability Constraint.
    Behjati M; Nordin R; Zulkifley MA; Abdullah NF
    Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433554
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intelligent Beetle Antennae Search for UAV Sensing and Avoidance of Obstacles.
    Wu Q; Shen X; Jin Y; Chen Z; Li S; Khan AH; Chen D
    Sensors (Basel); 2019 Apr; 19(8):. PubMed ID: 31013782
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi-UAV Path Planning Algorithm Based on BINN-HHO.
    Li S; Zhang R; Ding Y; Qin X; Han Y; Zhang H
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560155
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Control Method of Autonomous Flight Avoidance Barriers of UAVs in Confined Environments.
    Dong T; Zhang Y; Xiao Q; Huang Y
    Sensors (Basel); 2023 Jun; 23(13):. PubMed ID: 37447745
    [TBL] [Abstract][Full Text] [Related]  

  • 10. End-Cloud Collaboration Navigation Planning Method for Unmanned Aerial Vehicles Used in Small Areas.
    Xiong H; Yu B; Yi Q; He C
    Sensors (Basel); 2023 Aug; 23(16):. PubMed ID: 37631666
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Semi-Physical Platform for Guidance and Formations of Fixed-Wing Unmanned Aerial Vehicles.
    Yang J; Thomas AG; Singh S; Baldi S; Wang X
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32093021
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Piecewise-potential-field-based path planning method for fixed-wing UAV formation.
    Fang Y; Yao Y; Zhu F; Chen K
    Sci Rep; 2023 Feb; 13(1):2234. PubMed ID: 36754969
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multi-UAV Path Planning in GPS and Communication Denial Environment.
    Xu Y; Wei Y; Wang D; Jiang K; Deng H
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991708
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Curvature Continuous and Bounded Path Planning for Fixed-Wing UAVs.
    Wang X; Jiang P; Li D; Sun T
    Sensors (Basel); 2017 Sep; 17(9):. PubMed ID: 28925960
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Collision-Avoiding Flocking With Multiple Fixed-Wing UAVs in Obstacle-Cluttered Environments: A Task-Specific Curriculum-Based MADRL Approach.
    Yan C; Wang C; Xiang X; Low KH; Wang X; Xu X; Shen L
    IEEE Trans Neural Netw Learn Syst; 2023 Feb; PP():. PubMed ID: 37027621
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heterogeneous mission planning for a single unmanned aerial vehicle (UAV) with attention-based deep reinforcement learning.
    Jung M; Oh H
    PeerJ Comput Sci; 2022; 8():e1119. PubMed ID: 36426245
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On-Board Real-Time Trajectory Planning for Fixed Wing Unmanned Aerial Vehicles in Extreme Environments.
    Schellenberg B; Richardson T; Richards A; Clarke R; Watson M
    Sensors (Basel); 2019 Sep; 19(19):. PubMed ID: 31546639
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Position Checking-Based Sampling Approach Combined with Attraction Point Local Optimization for Safe Flight of UAVs.
    Zhu H; Li B; Tong R; Yin H; Zhu C
    Sensors (Basel); 2024 Mar; 24(7):. PubMed ID: 38610368
    [TBL] [Abstract][Full Text] [Related]  

  • 19. UAVs Task and Motion Planning in the Presence of Obstacles and Prioritized Targets.
    Gottlieb Y; Shima T
    Sensors (Basel); 2015 Nov; 15(11):29734-64. PubMed ID: 26610522
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Path planning optimization in unmanned aerial vehicles using meta-heuristic algorithms: a systematic review.
    Yahia HS; Mohammed AS
    Environ Monit Assess; 2022 Oct; 195(1):30. PubMed ID: 36282405
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.