These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 38931779)

  • 1. Superconducting Quantum Magnetometer Based on Flux Focusing Effect for High-Sensitivity Applications.
    Vettoliere A; Granata C
    Sensors (Basel); 2024 Jun; 24(12):. PubMed ID: 38931779
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Superconductive quantum interference magnetometer with high sensitivity achieved by an induced resonance.
    Vettoliere A; Granata C
    Rev Sci Instrum; 2014 Aug; 85(8):085006. PubMed ID: 25173305
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An ultralow noise current amplifier based on superconducting quantum interference device for high sensitivity applications.
    Granata C; Vettoliere A; Russo M
    Rev Sci Instrum; 2011 Jan; 82(1):013901. PubMed ID: 21280839
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly Sensitive Tunable Magnetometer Based on Superconducting Quantum Interference Device.
    Vettoliere A; Granata C
    Sensors (Basel); 2023 Mar; 23(7):. PubMed ID: 37050617
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An integrated superconductive magnetic nanosensor for high-sensitivity nanoscale applications.
    Granata C; Esposito E; Vettoliere A; Petti L; Russo M
    Nanotechnology; 2008 Jul; 19(27):275501. PubMed ID: 21828707
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A three-axis SQUID-based absolute vector magnetometer.
    Schönau T; Zakosarenko V; Schmelz M; Stolz R; Anders S; Linzen S; Meyer M; Meyer HG
    Rev Sci Instrum; 2015 Oct; 86(10):105002. PubMed ID: 26520976
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A compact, high performance atomic magnetometer for biomedical applications.
    Shah VK; Wakai RT
    Phys Med Biol; 2013 Nov; 58(22):8153-61. PubMed ID: 24200837
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Grooved Dayem Nanobridges as Building Blocks of High-Performance YBa
    Trabaldo E; Pfeiffer C; Andersson E; Arpaia R; Kalaboukhov A; Winkler D; Lombardi F; Bauch T
    Nano Lett; 2019 Mar; 19(3):1902-1907. PubMed ID: 30746946
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Noise of a superconducting magnetic flux sensor based on a proximity Josephson junction.
    Jabdaraghi RN; Golubev DS; Pekola JP; Peltonen JT
    Sci Rep; 2017 Aug; 7(1):8011. PubMed ID: 28808333
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High temperature RF SQUIDs for biomedical applications.
    Zhang Y; Tavrin Y; Mück M; Braginski AI; Heiden C; Elbert T; Hampson S
    Physiol Meas; 1993 May; 14(2):113-9. PubMed ID: 8334406
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of Self-Field Effects in Magnetometers Based on Meander-Shaped Arrays of Josephson Junctions or SQUIDs Connected in Series.
    Crété D; Kermorvant J; Lemaître Y; Marcilhac B; Mesoraca S; Trastoy J; Ulysse C
    Micromachines (Basel); 2021 Dec; 12(12):. PubMed ID: 34945440
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Superconducting Quantum Interferometers for Nondestructive Evaluation.
    Faley MI; Kostyurina EA; Kalashnikov KV; Maslennikov YV; Koshelets VP; Dunin-Borkowski RE
    Sensors (Basel); 2017 Dec; 17(12):. PubMed ID: 29210980
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A hybrid magnetometer towards femtotesla sensitivity under ambient conditions.
    Xie Y; Yu H; Zhu Y; Qin X; Rong X; Duan CK; Du J
    Sci Bull (Beijing); 2021 Jan; 66(2):127-132. PubMed ID: 36654219
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of high field SQUID magnetometer for magnetization studies up to 7 T and temperatures in the range from 4.2 to 300 K.
    Nagendran R; Thirumurugan N; Chinnasamy N; Janawadkar MP; Sundar CS
    Rev Sci Instrum; 2011 Jan; 82(1):015109. PubMed ID: 21280860
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low-noise nano superconducting quantum interference device operating in Tesla magnetic fields.
    Schwarz T; Nagel J; Wölbing R; Kemmler M; Kleiner R; Koelle D
    ACS Nano; 2013 Jan; 7(1):844-50. PubMed ID: 23252846
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SQUID detected NMR and NQR. Superconducting Quantum Interference Device.
    Augustine MP; TonThat DM; Clarke J
    Solid State Nucl Magn Reson; 1998 Mar; 11(1-2):139-56. PubMed ID: 9650797
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High temperature superconductor micro-superconducting-quantum-interference-device magnetometer for magnetization measurement of a microscale magnet.
    Takeda K; Mori H; Yamaguchi A; Ishimoto H; Nakamura T; Kuriki S; Hozumi T; Ohkoshi S
    Rev Sci Instrum; 2008 Mar; 79(3):033909. PubMed ID: 18377027
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental realization of Josephson junctions for an atom SQUID.
    Ryu C; Blackburn PW; Blinova AA; Boshier MG
    Phys Rev Lett; 2013 Nov; 111(20):205301. PubMed ID: 24289693
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fine-Tuning and Optimization of Superconducting Quantum Magnetic Sensors by Thermal Annealing.
    Vettoliere A; Ruggiero B; Valentino M; Silvestrini P; Granata C
    Sensors (Basel); 2019 Aug; 19(17):. PubMed ID: 31438525
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Superconducting Micro-Magnetometer for Quantum Vortex in Superconducting Nanoflakes.
    Bi X; Tian F; Chen G; Li Z; Qin F; Lv YY; Huang J; Qiu C; Ao L; Chen Y; Gu G; Chen Y; Yuan H
    Adv Mater; 2023 May; 35(19):e2211409. PubMed ID: 36808146
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.