These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 38931779)

  • 21. Development of a Superconducting Differential Double Contour Interferometer.
    Gurtovoi VL; Antonov VN; Nikulov AV; Shaikhaidarov RS; Tulin VA
    Nano Lett; 2017 Nov; 17(11):6516-6519. PubMed ID: 28991481
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A dumbbell-shaped hybrid magnetometer operating in DC-10 kHz.
    Shi H; Wang Y; Chen S; Lin J
    Rev Sci Instrum; 2017 Dec; 88(12):125001. PubMed ID: 29289192
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Theoretical foundation for real-time prostate localization using an inductively coupled transmitter and a superconducting quantum interference device (SQUID) magnetometer system.
    McGary JE
    J Appl Clin Med Phys; 2004; 5(4):29-45. PubMed ID: 15738919
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Current-induced SQUID behavior of superconducting Nb nano-rings.
    Sharon OJ; Shaulov A; Berger J; Sharoni A; Yeshurun Y
    Sci Rep; 2016 Jun; 6():28320. PubMed ID: 27321733
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Direct-coupled micro-magnetometer with Y-Ba-Cu-O nano-slit SQUID fabricated with a focused helium ion beam.
    Cho EY; Li H; LeFebvre JC; Zhou YW; Dynes RC; Cybart SA
    Appl Phys Lett; 2018 Oct; 113(16):162602. PubMed ID: 30364078
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Design and validation of a large-format transition edge sensor array magnetic shielding system for space application.
    Bergen A; van Weers HJ; Bruineman C; Dhallé MM; Krooshoop HJ; Ter Brake HJ; Ravensberg K; Jackson BD; Wafelbakker CK
    Rev Sci Instrum; 2016 Oct; 87(10):105109. PubMed ID: 27802721
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Miniaturization of the Superconducting Memory Cell
    Chen L; Wu L; Wang Y; Pan Y; Zhang D; Zeng J; Liu X; Ma L; Peng W; Wang Y; Ren J; Wang Z
    ACS Nano; 2020 Sep; 14(9):11002-11008. PubMed ID: 32697567
    [TBL] [Abstract][Full Text] [Related]  

  • 28. High sensitivity optically pumped quantum magnetometer.
    Tiporlini V; Alameh K
    ScientificWorldJournal; 2013; 2013():858379. PubMed ID: 23766716
    [TBL] [Abstract][Full Text] [Related]  

  • 29. HTS magnetometers for fetal magnetocardiography.
    Li Z; Wakai RT; Paulson DN; Schwartz B
    Neurol Clin Neurophysiol; 2004 Nov; 2004():25. PubMed ID: 16012655
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A 37-channel DC SQUID magnetometer system.
    Drung D; Zimmermann R; Cantor R; Erné SN; Koch H; Matthies KP; Peters M; Scheer HJ; Stollfuss D
    Clin Phys Physiol Meas; 1991; 12 Suppl B():21-9. PubMed ID: 1807875
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A subfemtotesla multichannel atomic magnetometer.
    Kominis IK; Kornack TW; Allred JC; Romalis MV
    Nature; 2003 Apr; 422(6932):596-9. PubMed ID: 12686995
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Flux Tunable Superconducting Quantum Circuit Based on Weyl Semimetal MoTe
    Chiu KL; Qian D; Qiu J; Liu W; Tan D; Mosallanejad V; Liu S; Zhang Z; Zhao Y; Yu D
    Nano Lett; 2020 Dec; 20(12):8469-8475. PubMed ID: 33174417
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Multichannel system based on a high sensitivity superconductive sensor for magnetoencephalography.
    Rombetto S; Granata C; Vettoliere A; Russo M
    Sensors (Basel); 2014 Jul; 14(7):12114-26. PubMed ID: 25006995
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Whole-head SQUID system in a superconducting magnetic shield.
    Ohta H; Matsui T; Uchikawa Y
    Neurol Clin Neurophysiol; 2004 Nov; 2004():58. PubMed ID: 16012595
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Continuous reading SQUID magnetometer and its applications.
    Janů Z; Soukup F
    Rev Sci Instrum; 2017 Jun; 88(6):065104. PubMed ID: 28668003
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Miniature anvil cell for high-pressure measurements in a commercial superconducting quantum interference device magnetometer.
    Alireza PL; Lonzarich GG
    Rev Sci Instrum; 2009 Feb; 80(2):023906. PubMed ID: 19256661
    [TBL] [Abstract][Full Text] [Related]  

  • 37. SQUID-detected magnetic resonance imaging in microtesla fields.
    Clarke J; Hatridge M; Mössle M
    Annu Rev Biomed Eng; 2007; 9():389-413. PubMed ID: 17328671
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Flux focusing with a superconducting nanoneedle for scanning SQUID susceptometry.
    Xiang BK; Wang SY; Wang YF; Zhu JJ; Xu HT; Wang YH
    Microsyst Nanoeng; 2023; 9():78. PubMed ID: 37313472
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Magnetic Flux Sensor Based on Spiking Neurons with Josephson Junctions.
    Karimov T; Ostrovskii V; Rybin V; Druzhina O; Kolev G; Butusov D
    Sensors (Basel); 2024 Apr; 24(7):. PubMed ID: 38610577
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electrically Tunable Multiterminal SQUID-on-Tip.
    Uri A; Meltzer AY; Anahory Y; Embon L; Lachman EO; Halbertal D; Hr N; Myasoedov Y; Huber ME; Young AF; Zeldov E
    Nano Lett; 2016 Nov; 16(11):6910-6915. PubMed ID: 27672705
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.