BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 38931783)

  • 1. Ultra-High Vacuum Cells Realized by Miniature Ion Pump Using High-Efficiency Plasma Source.
    Kurashima Y; Maeda A; Oshima N; Motomura T; Matsumae T; Watanabe M; Takagi H
    Sensors (Basel); 2024 Jun; 24(12):. PubMed ID: 38931783
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-Efficiency Plasma Source Using a Magnetic Mirror Trap for Miniature-Ion Pumps.
    Kurashima Y; Motomura T; Yanagimachi S; Matsumae T; Watanabe M; Takagi H
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679836
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cathode Design Optimization toward the Wide-Pressure-Range Miniature Discharge Ion Source for a Vacuum Micropump.
    Yao T; Tang F; Zhang J; Wang X
    Sensors (Basel); 2019 Feb; 19(3):. PubMed ID: 30717216
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a new UHV/XHV pressure standard (Cold Atom Vacuum Standard).
    Scherschligt J; Fedchak JA; Barker DS; Eckel S; Klimov N; Makrides C; Tiesinga E
    Metrologia; 2017 Dec; 54(6):S125-S132. PubMed ID: 29269961
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Precise quantum measurement of vacuum with cold atoms.
    Barker DS; Acharya BP; Fedchak JA; Klimov NN; Norrgard EB; Scherschligt J; Tiesinga E; Eckel SP
    Rev Sci Instrum; 2022 Dec; 93(12):121101. PubMed ID: 36586922
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A highly miniaturized vacuum package for a trapped ion atomic clock.
    Schwindt PD; Jau YY; Partner H; Casias A; Wagner AR; Moorman M; Manginell RP; Kellogg JR; Prestage JD
    Rev Sci Instrum; 2016 May; 87(5):053112. PubMed ID: 27250397
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Challenges to miniaturizing cold atom technology for deployable vacuum metrology.
    Eckel S; Barker DS; Fedchak JA; Klimov NN; Norrgard E; Scherschligt J; Makrides C; Tiesinga E
    Metrologia; 2018; 55():. PubMed ID: 30983635
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Additive manufacturing of magnetic shielding and ultra-high vacuum flange for cold atom sensors.
    Vovrosh J; Voulazeris G; Petrov PG; Zou J; Gaber Y; Benn L; Woolger D; Attallah MM; Boyer V; Bongs K; Holynski M
    Sci Rep; 2018 Jan; 8(1):2023. PubMed ID: 29386536
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design of portable mass spectrometers with handheld probes: aspects of the sampling and miniature pumping systems.
    Chen CH; Chen TC; Zhou X; Kline-Schoder R; Sorensen P; Cooks RG; Ouyang Z
    J Am Soc Mass Spectrom; 2015 Feb; 26(2):240-7. PubMed ID: 25404157
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantification and evaluation of ion transmission efficiency in two-stage vacuum chamber miniature mass spectrometer.
    Guo C; Diao Z; Liu J; Yang B; Zhang J
    J Mass Spectrom; 2022 Mar; 57(3):e4816. PubMed ID: 35229406
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wisconsin In Situ Penning (WISP) gauge: A versatile neutral pressure gauge to measure partial pressures in strong magnetic fields.
    Kremeyer T; Flesch K; Schmitz O; Schlisio G; Wenzel U;
    Rev Sci Instrum; 2020 Apr; 91(4):043504. PubMed ID: 32357759
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Miniature Orthogonal Injection Ion Funnel (MO-IF) Providing Enhanced Performance for the Miniature Mass Spectrometer.
    Tu M; Xu W; Zhai Y
    J Am Soc Mass Spectrom; 2024 Jun; 35(6):1363-1369. PubMed ID: 38683544
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrahigh vacuum packaging and surface cleaning for quantum devices.
    Mergenthaler M; Paredes S; Müller P; Müller C; Filipp S; Sandberg M; Hertzberg JB; Adiga VP; Brink M; Fuhrer A
    Rev Sci Instrum; 2021 Feb; 92(2):025121. PubMed ID: 33648100
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A compact, ultra-high vacuum ion source for isotopically enriching and depositing
    Tang K; Kim HS; Ramanayaka ANR; Simons DS; Pomeroy JM
    Rev Sci Instrum; 2019 Aug; 90(8):083308. PubMed ID: 31472599
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An On-Chip Microscale Vacuum Chamber with High Sealing Performance Using Graphene as Lateral Feedthrough.
    Yu P; Zhan F; Rao W; Zhao Y; Fang Z; Tu Z; Li Z; Guo D; Wei X
    Micromachines (Basel); 2022 Dec; 14(1):. PubMed ID: 36677145
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An ultra-low energy (30-200 eV) ion-atomic beam source for ion-beam-assisted deposition in ultrahigh vacuum.
    Mach J; Samoril T; Voborný S; Kolíbal M; Zlámal J; Spousta J; Dittrichová L; Sikola T
    Rev Sci Instrum; 2011 Aug; 82(8):083302. PubMed ID: 21895238
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vacuum Furnace for Degassing Stainless-Steel Vacuum Components.
    Fedchak JA; Scherschligt J; Barker D; Eckel S; Farrell AP; Sefa M
    J Vac Sci Technol A; 2018 Mar; 36(2):. PubMed ID: 29881141
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of bioparticles using a miniature cylindrical ion trap mass spectrometer operated at rough vacuum.
    Zhu Z; Xiong C; Xu G; Liu H; Zhou X; Chen R; Peng WP; Nie Z
    Analyst; 2011 Apr; 136(7):1305-9. PubMed ID: 21305099
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controlled evacuation using the biocompatible and energy efficient microfluidic ejector.
    Lad VN; Ralekar S
    Biomed Microdevices; 2016 Oct; 18(5):96. PubMed ID: 27647149
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generation of high charge state metal ion beams by electron cyclotron resonance heating of vacuum arc plasma in cusp trap.
    Nikolaev AG; Savkin KP; Oks EM; Vizir AV; Yushkov GY; Vodopyanov AV; Izotov IV; Mansfeld DA
    Rev Sci Instrum; 2012 Feb; 83(2):02A309. PubMed ID: 22380156
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.