BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 38932095)

  • 1. Flash Pyrolysis of Waste Tires in an Entrained Flow Reactor-An Experimental Study.
    Ramani B; Anjum A; Bramer E; Dierkes W; Blume A; Brem G
    Polymers (Basel); 2024 Jun; 16(12):. PubMed ID: 38932095
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative analysis of the characteristics of carbonaceous material obtained via single-staged steam pyrolysis of waste tires.
    Larionov KB; Slyusarskiy KV; Ivanov AA; Mishakov IV; Pak AY; Jankovsky SA; Stoyanovskii VO; Vedyagin AA; Gubin VE
    J Air Waste Manag Assoc; 2022 Feb; 72(2):161-175. PubMed ID: 34846272
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Waste tire pyrolysis and desulfurization of tire pyrolytic oil (TPO) - A review.
    Mello M; Rutto H; Seodigeng T
    J Air Waste Manag Assoc; 2023 Mar; 73(3):159-177. PubMed ID: 36269581
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influences and mechanisms of pyrolytic conditions on recycling BTX products from passenger car waste tires.
    Zheng D; Cheng J; Wang X; Yu G; Xu R; Dai C; Liu N; Wang N; Chen B
    Waste Manag; 2023 Sep; 169():196-207. PubMed ID: 37453307
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recovery of carbon black from waste tire in continuous commercial rotary kiln pyrolysis reactor.
    Xu J; Yu J; He W; Huang J; Xu J; Li G
    Sci Total Environ; 2021 Jun; 772():145507. PubMed ID: 33770869
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characteristics of the pyrolytic products and the pollutant emissions at different operating stages from a pilot waste tire pyrolysis furnace.
    Fu J; Ye W; Ji L; Yin Y; Xu X; Huang Q; Li X; Jiao W; Zhan M
    Waste Manag; 2024 Feb; 174():585-596. PubMed ID: 38142564
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Upgrading pyrolytic residue from waste tires to commercial carbon black.
    Zhang X; Li H; Cao Q; Jin L; Wang F
    Waste Manag Res; 2018 May; 36(5):436-444. PubMed ID: 29589516
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Production and Upgrading of Recovered Carbon Black from the Pyrolysis of End-of-Life Tires.
    Costa SMR; Fowler D; Carreira GA; Portugal I; Silva CM
    Materials (Basel); 2022 Mar; 15(6):. PubMed ID: 35329479
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Products distribution and pollutants releasing characteristics during pyrolysis of waste tires under different thermal process.
    Chen G; Sun B; Li J; Lin F; Xiang L; Yan B
    J Hazard Mater; 2022 Feb; 424(Pt A):127351. PubMed ID: 34879557
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study of waste tire pyrolysis in a rotary kiln reactor in a wide range of pyrolysis temperature.
    Yazdani E; Hashemabadi SH; Taghizadeh A
    Waste Manag; 2019 Feb; 85():195-201. PubMed ID: 30803573
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polycyclic aromatic hydrocarbons (PAHs) and volatile organic compounds (VOCs) mitigation in the pyrolysis process of waste tires using CO₂ as a reaction medium.
    Kwon EE; Oh JI; Kim KH
    J Environ Manage; 2015 Sep; 160():306-11. PubMed ID: 26117814
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of Chemically Activated Pyrolytic Carbon Black Derived from Waste Tires as a Candidate for Nanomaterial Precursor.
    González-González RB; González LT; Iglesias-González S; González-González E; Martinez-Chapa SO; Madou M; Alvarez MM; Mendoza A
    Nanomaterials (Basel); 2020 Nov; 10(11):. PubMed ID: 33172181
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Study of passenger-car-waste-tire pyrolysis: Behavior and mechanism under kinetical regime.
    Zheng D; Cheng J; Dai C; Xu R; Wang X; Liu N; Wang N; Yu G; Chen B
    Waste Manag; 2022 Jul; 148():71-82. PubMed ID: 35667238
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Waste tire valorization by intermediate pyrolysis using a continuous twin-auger reactor: Operational features.
    Martínez JD; Campuzano F; Cardona-Uribe N; Arenas CN; Muñoz-Lopera D
    Waste Manag; 2020 Jul; 113():404-412. PubMed ID: 32593106
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Performance Improvement Effect of Asphalt Binder Using Pyrolysis Carbon Black.
    Lee K; Kim S
    Materials (Basel); 2022 Jun; 15(12):. PubMed ID: 35744217
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of upgrading ability and limitations of slow co-pyrolysis: Case of olive mill wastewater sludge/waste tires slow co-pyrolysis.
    Grioui N; Halouani K; Agblevor FA
    Waste Manag; 2019 Jun; 92():75-88. PubMed ID: 31160029
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of molten salt thermal treatment on the properties improvement of waste tire pyrolytic char.
    Zou C; Ren Y; Li S; Hu H; Cao C; Tang H; Li X; Yao H
    Waste Manag; 2022 Jul; 149():53-59. PubMed ID: 35714436
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Demonstration of the waste tire pyrolysis process on pilot scale in a continuous auger reactor.
    Martínez JD; Murillo R; García T; Veses A
    J Hazard Mater; 2013 Oct; 261():637-45. PubMed ID: 23995560
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of temperature profile during the pyrolysis of end-of-life-tyres in an industrially relevant conditions auger plant.
    Sanchís A; Veses A; Martínez JD; López JM; García T; Murillo R
    J Environ Manage; 2022 Sep; 317():115323. PubMed ID: 35649337
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-value utilization of waste tires: A review with focus on modified carbon black from pyrolysis.
    Xu J; Yu J; Xu J; Sun C; He W; Huang J; Li G
    Sci Total Environ; 2020 Nov; 742():140235. PubMed ID: 32629243
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.