These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 38932188)

  • 21. Facile green synthesis of zinc oxide nanoparticles using Ulva lactuca seaweed extract and evaluation of their photocatalytic, antibiofilm and insecticidal activity.
    Ishwarya R; Vaseeharan B; Kalyani S; Banumathi B; Govindarajan M; Alharbi NS; Kadaikunnan S; Al-Anbr MN; Khaled JM; Benelli G
    J Photochem Photobiol B; 2018 Jan; 178():249-258. PubMed ID: 29169140
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Green Fabrication, Characterization of Zinc Oxide Nanoparticles Using Plant Extract of Momordica charantia and Curcuma zedoaria and Their Antibacterial and Antioxidant Activities.
    Ihsan M; Din IU; Alam K; Munir I; Mohamed HI; Khan F
    Appl Biochem Biotechnol; 2023 Jun; 195(6):3546-3565. PubMed ID: 36622631
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Control of biofilm forming clinically important bacteria by green synthesized ZnO nanoparticles and its ecotoxicity on Ceriodaphnia cornuta.
    Vijayakumar S; Malaikozhundan B; Shanthi S; Vaseeharan B; Thajuddin N
    Microb Pathog; 2017 Jun; 107():88-97. PubMed ID: 28330748
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Green Synthesis of Zinc Oxide Nanoparticles from Pomegranate (
    Ifeanyichukwu UL; Fayemi OE; Ateba CN
    Molecules; 2020 Oct; 25(19):. PubMed ID: 33023149
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Green synthesis and characterization of zinc oxide nanoparticles using leaf extract of Thryallis glauca (Cav.) Kuntze and their role as antioxidant and antibacterial.
    Dey A; Somaiah S
    Microsc Res Tech; 2022 Aug; 85(8):2835-2847. PubMed ID: 35429410
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Antibacterial and antibiofilm efficacy of green synthesized ZnO nanoparticles using Saraca asoca leaves.
    Agrawal A; Sharma R; Sharma A; Gurjar KC; Kumar S; Chatterjee S; Pandey H; Awasthi K; Awasthi A
    Environ Sci Pollut Res Int; 2023 Aug; 30(36):86328-86337. PubMed ID: 37402918
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evaluate the Effect of Zinc Oxide and Silver Nanoparticles on Biofilm and icaA Gene Expression in Methicillin-Resistant Staphylococcus aureus Isolated From Burn Wound Infection.
    Shakerimoghaddam A; Razavi D; Rahvar F; Khurshid M; Ostadkelayeh SM; Esmaeili SA; Khaledi A; Eshraghi M
    J Burn Care Res; 2020 Nov; 41(6):1253-1259. PubMed ID: 32479611
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mycogenic Synthesis of Extracellular Zinc Oxide Nanoparticles from
    Sumanth B; Lakshmeesha TR; Ansari MA; Alzohairy MA; Udayashankar AC; Shobha B; Niranjana SR; Srinivas C; Almatroudi A
    Int J Nanomedicine; 2020; 15():8519-8536. PubMed ID: 33173290
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A novel bacteriophage cocktail reduces and disperses Pseudomonas aeruginosa biofilms under static and flow conditions.
    Alves DR; Perez-Esteban P; Kot W; Bean JE; Arnot T; Hansen LH; Enright MC; Jenkins AT
    Microb Biotechnol; 2016 Jan; 9(1):61-74. PubMed ID: 26347362
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Towards a better understanding of Pseudomonas putida biofilm formation in the presence of ZnO nanoparticles (NPs): Role of NP concentration.
    Ouyang K; Mortimer M; Holden PA; Cai P; Wu Y; Gao C; Huang Q
    Environ Int; 2020 Apr; 137():105485. PubMed ID: 32004708
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Green nanotechnology advances: green manufacturing of zinc nanoparticles, characterization, and foliar application on wheat and antibacterial characteristics using Mentha spicata (mint) and Ocimum basilicum (basil) leaf extracts.
    Doğaroğlu ZG; Uysal Y; Çaylalı Z; Karakulak DS
    Environ Sci Pollut Res Int; 2023 May; 30(21):60820-60837. PubMed ID: 37039921
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Combination of 2-
    Liu J; Chang Z; Chang X; Li J; Glebe U; Jia AQ
    mSphere; 2023 Feb; 8(1):e0059722. PubMed ID: 36645278
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Reactive oxygen species mediated bacterial biofilm inhibition via zinc oxide nanoparticles and their statistical determination.
    Dwivedi S; Wahab R; Khan F; Mishra YK; Musarrat J; Al-Khedhairy AA
    PLoS One; 2014; 9(11):e111289. PubMed ID: 25402188
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Green synthesis of silver nanoparticles using Carum copticum: Assessment of its quorum sensing and biofilm inhibitory potential against gram negative bacterial pathogens.
    Qais FA; Shafiq A; Ahmad I; Husain FM; Khan RA; Hassan I
    Microb Pathog; 2020 Jul; 144():104172. PubMed ID: 32224208
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evaluation of tetraethoxysilane (TEOS) sol-gel coatings, modified with green synthesized zinc oxide nanoparticles for combating microfouling.
    Krupa AN; Vimala R
    Mater Sci Eng C Mater Biol Appl; 2016 Apr; 61():728-35. PubMed ID: 26838903
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bacterial exopolysaccharide (EPS)-coated ZnO nanoparticles showed high antibiofilm activity and larvicidal toxicity against malaria and Zika virus vectors.
    Abinaya M; Vaseeharan B; Divya M; Sharmili A; Govindarajan M; Alharbi NS; Kadaikunnan S; Khaled JM; Benelli G
    J Trace Elem Med Biol; 2018 Jan; 45():93-103. PubMed ID: 29173489
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bacteriophage PEV20 and Ciprofloxacin Combination Treatment Enhances Removal of Pseudomonas aeruginosa Biofilm Isolated from Cystic Fibrosis and Wound Patients.
    Chang RYK; Das T; Manos J; Kutter E; Morales S; Chan HK
    AAPS J; 2019 Apr; 21(3):49. PubMed ID: 30949776
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bacteriophage Treatment before Chemical Disinfection Can Enhance Removal of Plastic-Surface-Associated Pseudomonas aeruginosa.
    Stachler E; Kull A; Julian TR
    Appl Environ Microbiol; 2021 Sep; 87(20):e0098021. PubMed ID: 34347517
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Synthesis of ZnO nanoparticles using insulin-rich leaf extract: Anti-diabetic, antibiofilm and anti-oxidant properties.
    Vinotha V; Iswarya A; Thaya R; Govindarajan M; Alharbi NS; Kadaikunnan S; Khaled JM; Al-Anbr MN; Vaseeharan B
    J Photochem Photobiol B; 2019 Aug; 197():111541. PubMed ID: 31272033
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Crataeva nurvala nanoparticles inhibit virulence factors and biofilm formation in clinical isolates of Pseudomonas aeruginosa.
    Ali SG; Ansari MA; Khan HM; Jalal M; Mahdi AA; Cameotra SS
    J Basic Microbiol; 2017 Mar; 57(3):193-203. PubMed ID: 27874198
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.