These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 38932545)

  • 1. [Numerical study of the effect of geometrical parameters of straight impellers on the flow and hemolysis performance of centrifugal blood pumps].
    Huang D; Xiong S; Xiao Y; Wang J; Cui G
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2024 Jun; 41(3):577-583. PubMed ID: 38932545
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impeller (straight blade) design variations and their influence on the performance of a centrifugal blood pump.
    Fang P; Du J; Yu S
    Int J Artif Organs; 2020 Dec; 43(12):782-795. PubMed ID: 32312159
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation of the influence of blade configuration on the hemodynamic performance and blood damage of the centrifugal blood pump.
    Li Y; Yu J; Wang H; Xi Y; Deng X; Chen Z; Fan Y
    Artif Organs; 2022 Sep; 46(9):1817-1832. PubMed ID: 35436361
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Effect of Geometry on the Efficiency and Hemolysis of Centrifugal Implantable Blood Pumps.
    Mozafari S; Rezaienia MA; Paul GM; Rothman MT; Wen P; Korakianitis T
    ASAIO J; 2017; 63(1):53-59. PubMed ID: 28033202
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of blade curvature on the hemolytic and hydraulic characteristics of a centrifugal blood pump.
    Ozturk C; Aka IB; Lazoglu I
    Int J Artif Organs; 2018 Nov; 41(11):730-737. PubMed ID: 29998774
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of volute design features on hemodynamic performance and hemocompatibility of centrifugal blood pumps used in ECMO.
    Li Y; Wang H; Xi Y; Sun A; Deng X; Chen Z; Fan Y
    Artif Organs; 2023 Jan; 47(1):88-104. PubMed ID: 35962603
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical study on the performance of centrifugal blood pump with superhydrophobic surface.
    Li C; Qiu H; Ma J; Wang Y
    Int J Artif Organs; 2022 Dec; 45(12):1028-1036. PubMed ID: 36028949
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of rotor impeller structure on performance improvement of suspended axial flow blood pumps.
    Wang L; Yun Z; Tang X; Xiang C
    Int J Artif Organs; 2024 Mar; 47(3):162-172. PubMed ID: 38450429
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Numerical assessment of impeller features of centrifugal blood pump based on fast hemolysis approximation model].
    Shou C; Guo Y; Su L; Li Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2014 Dec; 31(6):1260-4. PubMed ID: 25868241
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical investigation of the effect of blade geometry on blood trauma in a centrifugal blood pump.
    Chan WK; Wong YW; Ding Y; Chua LP; Yu SC
    Artif Organs; 2002 Sep; 26(9):785-93. PubMed ID: 12197935
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of design methods of a centrifugal blood pump with in vitro tests, flow visualization, and computational fluid dynamics: results in hemolysis tests.
    Takiura K; Masuzawa T; Endo S; Wakisaka Y; Tatsumi E; Taenaka Y; Takano H; Yamane T; Nishida M; Asztalos B; Konishi Y; Miyazoe Y; Ito K
    Artif Organs; 1998 May; 22(5):393-8. PubMed ID: 9609347
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hemodynamic investigation and in vitro evaluation of a novel mixed-flow blood pump.
    Qu Y; Guo Z; Zhang J; Li G; Zhang S; Li D
    Artif Organs; 2022 Aug; 46(8):1533-1543. PubMed ID: 35167128
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Design of an axial blood pump of diffuser with splitter blades and cantilevered main blades].
    Liu G; Xi J; Chen H; Zhang Y; Hou J; Zhou J; Sun H; Hu S
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2019 Jun; 36(3):379-385. PubMed ID: 31232539
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational fluid dynamics analysis of blade tip clearances on hemodynamic performance and blood damage in a centrifugal ventricular assist device.
    Wu J; Paden BE; Borovetz HS; Antaki JF
    Artif Organs; 2010 May; 34(5):402-11. PubMed ID: 19832736
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The impact of rotor configurations on hemodynamic features, hemocompatibility and dynamic balance of the centrifugal blood pump: A numerical study.
    Li Y; Xi Y; Wang H; Sun A; Deng X; Chen Z; Fan Y
    Int J Numer Method Biomed Eng; 2023 Feb; 39(2):e3671. PubMed ID: 36507614
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hemolysis in different centrifugal pumps.
    Kawahito K; Nosé Y
    Artif Organs; 1997 Apr; 21(4):323-6. PubMed ID: 9096806
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Numerical study of a bio-centrifugal blood pump with straight impeller blade profiles.
    Song G; Chua LP; Lim TM
    Artif Organs; 2010 Feb; 34(2):98-104. PubMed ID: 19817732
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimization of Axial Pump Characteristic Dimensions and Induced Hemolysis for Mechanical Circulatory Support Devices.
    Korakianitis T; Rezaienia MA; Paul G; Avital E; Rothman M; Mozafari S
    ASAIO J; 2018; 64(6):727-734. PubMed ID: 29117039
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The flow patterns within the impeller passages of a centrifugal blood pump model.
    Yu SC; Ng BT; Chan WK; Chua LP
    Med Eng Phys; 2000 Jul; 22(6):381-93. PubMed ID: 11086249
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Numerical Analysis of Blood Damage Potential of the HeartMate II and HeartWare HVAD Rotary Blood Pumps.
    Thamsen B; Blümel B; Schaller J; Paschereit CO; Affeld K; Goubergrits L; Kertzscher U
    Artif Organs; 2015 Aug; 39(8):651-9. PubMed ID: 26234447
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.