BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 38932669)

  • 1. Systematic Selection of High-Affinity ssDNA Sequences to Carbon Nanotubes.
    Lee D; Lee J; Kim W; Suh Y; Park J; Kim S; Kim Y; Kwon S; Jeong S
    Adv Sci (Weinh); 2024 Jun; ():e2308915. PubMed ID: 38932669
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Control of Integrin Affinity by Confining RGD Peptides on Fluorescent Carbon Nanotubes.
    Polo E; Nitka TT; Neubert E; Erpenbeck L; Vuković L; Kruss S
    ACS Appl Mater Interfaces; 2018 May; 10(21):17693-17703. PubMed ID: 29708725
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular dynamics simulations reveal single-stranded DNA (ssDNA) forms ordered structures upon adsorbing onto single-walled carbon nanotubes (SWCNT).
    Hinkle KR
    Colloids Surf B Biointerfaces; 2022 Apr; 212():112343. PubMed ID: 35066312
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adsorption and Desorption of Single-Stranded DNA from Single-Walled Carbon Nanotubes.
    Shearer CJ; Yu L; Fenati R; Sibley AJ; Quinton JS; Gibson CT; Ellis AV; Andersson GG; Shapter JG
    Chem Asian J; 2017 Jul; 12(13):1625-1634. PubMed ID: 28407412
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Understanding the binding mechanism of various chiral SWCNTs and ssDNA: a computational study.
    Neihsial S; Periyasamy G; Samanta PK; Pati SK
    J Phys Chem B; 2012 Dec; 116(51):14754-9. PubMed ID: 23199121
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solvation Free Energy of Self-Assembled Complexes: Using Molecular Dynamics to Understand the Separation of ssDNA-Wrapped Single-Walled Carbon Nanotubes.
    Hinkle KR; Phelan FR
    J Phys Chem C Nanomater Interfaces; 2020; 124():. PubMed ID: 34136061
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Studying Different Binding and Intracellular Delivery Efficiency of ssDNA Single-Walled Carbon Nanotubes and Their Effects on LC3-Related Autophagy in Renal Mesangial Cells via miRNA-382.
    Wang G; Zhao T; Wang L; Hu B; Darabi A; Lin J; Xing MM; Qiu X
    ACS Appl Mater Interfaces; 2015 Nov; 7(46):25733-40. PubMed ID: 26327220
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mapping the Morphology of DNA on Carbon Nanotubes in Solution Using X-ray Scattering Interferometry.
    Rosenberg DJ; Cunningham FJ; Hubbard JD; Goh NS; Wang JW; Nishitani S; Hayman EB; Hura GL; Landry MP; Pinals RL
    J Am Chem Soc; 2024 Jan; 146(1):386-398. PubMed ID: 38158616
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dye Quenching of Carbon Nanotube Fluorescence Reveals Structure-Selective Coating Coverage.
    Zheng Y; Alizadehmojarad AA; Bachilo SM; Kolomeisky AB; Weisman RB
    ACS Nano; 2020 Sep; 14(9):12148-12158. PubMed ID: 32845604
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction of single-stranded DNA with curved carbon nanotube is much stronger than with flat graphite.
    Iliafar S; Mittal J; Vezenov D; Jagota A
    J Am Chem Soc; 2014 Sep; 136(37):12947-57. PubMed ID: 25162693
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photoluminescence Dynamics Defined by Exciton Trapping Potential of Coupled Defect States in DNA-Functionalized Carbon Nanotubes.
    Zheng Y; Weight BM; Jones AC; Chandrasekaran V; Gifford BJ; Tretiak S; Doorn SK; Htoon H
    ACS Nano; 2021 Jan; 15(1):923-933. PubMed ID: 33395262
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microbiosensors based on DNA modified single-walled carbon nanotube and Pt black nanocomposites.
    Shi J; Cha TG; Claussen JC; Diggs AR; Choi JH; Porterfield DM
    Analyst; 2011 Dec; 136(23):4916-24. PubMed ID: 21858297
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Compositional Analysis of ssDNA-Coated Single-Wall Carbon Nanotubes through UV Absorption Spectroscopy.
    Alizadehmojarad AA; Bachilo SM; Weisman RB
    Nano Lett; 2022 Oct; 22(20):8203-8209. PubMed ID: 36201880
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DNA-templated synthesis of Pt nanoparticles on single-walled carbon nanotubes.
    Dong L
    Nanotechnology; 2009 Nov; 20(46):465602. PubMed ID: 19843998
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Noncovalent Protein and Peptide Functionalization of Single-Walled Carbon Nanotubes for Biodelivery and Optical Sensing Applications.
    Antonucci A; Kupis-Rozmysłowicz J; Boghossian AA
    ACS Appl Mater Interfaces; 2017 Apr; 9(13):11321-11331. PubMed ID: 28299937
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Impact of Sonication on the Surface Quality of Single-Walled Carbon Nanotubes.
    Koh B; Cheng W
    J Pharm Sci; 2015 Aug; 104(8):2594-9. PubMed ID: 26017390
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tracing chirality, diameter dependence, and temperature-controlling of single-walled carbon nanotube non-covalent functionalization by biologically compatible peptide: insights from molecular dynamics simulations.
    Tohidifar L; Hadipour NL
    J Mol Model; 2019 Aug; 25(9):274. PubMed ID: 31451939
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A convenient method of attaching fluorescent dyes on single-walled carbon nanotubes pre-wrapped with DNA molecules.
    Tomura A; Umemura K
    Anal Biochem; 2018 Apr; 547():1-6. PubMed ID: 29428378
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced cellular internalization of near-infrared fluorescent single-walled carbon nanotubes facilitated by a transfection reagent.
    Levin N; Hendler-Neumark A; Kamber D; Bisker G
    J Colloid Interface Sci; 2024 Jun; 664():650-666. PubMed ID: 38490040
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enantiomers of Single-Wall Carbon Nanotubes Show Distinct Coating Displacement Kinetics.
    Zheng Y; Bachilo SM; Weisman RB
    J Phys Chem Lett; 2018 Jul; 9(13):3793-3797. PubMed ID: 29939759
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.