These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 38932997)

  • 21. Degradation Reduces Microbial Richness and Alters Microbial Functions in an Australian Peatland.
    Birnbaum C; Wood J; Lilleskov E; Lamit LJ; Shannon J; Brewer M; Grover S
    Microb Ecol; 2023 Apr; 85(3):875-891. PubMed ID: 35867139
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Preservation of organic matter in marine sediments by inner-sphere interactions with reactive iron.
    Barber A; Brandes J; Leri A; Lalonde K; Balind K; Wirick S; Wang J; Gélinas Y
    Sci Rep; 2017 Mar; 7(1):366. PubMed ID: 28336935
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cycling and persistence of iron-bound organic carbon in subseafloor sediments.
    Chen Y; Dong L; Sui W; Niu M; Cui X; Hinrichs KU; Wang F
    Nat Commun; 2024 Jul; 15(1):6370. PubMed ID: 39075044
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Organic carbon preservation in wetlands: Iron oxide protection vs. thermodynamic limitation.
    Sun FS; Ma C; Yu GH; Kuzyakov Y; Lang YC; Fu PQ; Guo LJ; Teng HH; Liu CQ
    Water Res; 2023 Aug; 241():120133. PubMed ID: 37262945
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Soil drainage facilitates earthworm invasion and subsequent carbon loss from peatland soil.
    Wu X; Cao R; Wei X; Xi X; Shi P; Eisenhauer N; Sun S
    J Appl Ecol; 2017 Feb; 54(5):1291-1300. PubMed ID: 30319142
    [No Abstract]   [Full Text] [Related]  

  • 26. Organic matter preservation through complexation with iron minerals in two basins of a dimictic boreal lake with contrasting deep water redox regimes.
    Joshani A; Mirzaei Y; Barber A; Balind K; Gobeil C; Gélinas Y
    Sci Total Environ; 2024 May; 925():171776. PubMed ID: 38499107
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Increasing the organic carbon stocks in mineral soils sequesters large amounts of phosphorus.
    Spohn M
    Glob Chang Biol; 2020 Aug; 26(8):4169-4177. PubMed ID: 32396708
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Active Iron Phases Regulate the Abiotic Transformation of Organic Carbon during Redox Fluctuation Cycles of Paddy Soil.
    Chen N; Fu Q; Wu T; Cui P; Fang G; Liu C; Chen C; Liu G; Wang W; Wang D; Wang P; Zhou D
    Environ Sci Technol; 2021 Oct; 55(20):14281-14293. PubMed ID: 34623154
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Carbon storage dynamics in peatlands: Comparing recent- and long-term accumulation histories in southern Patagonia.
    Bunsen MS; Loisel J
    Glob Chang Biol; 2020 Oct; 26(10):5778-5795. PubMed ID: 32623771
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Spatial Associations and Chemical Composition of Organic Carbon Sequestered in Fe, Ca, and Organic Carbon Ternary Systems.
    Sowers TD; Adhikari D; Wang J; Yang Y; Sparks DL
    Environ Sci Technol; 2018 Jun; 52(12):6936-6944. PubMed ID: 29770687
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Soil carbon loss from drained agricultural peatland after coverage with mineral soil.
    Wang Y; Paul SM; Jocher M; Espic C; Alewell C; Szidat S; Leifeld J
    Sci Total Environ; 2021 Dec; 800():149498. PubMed ID: 34426363
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biogeochemistry of metalliferous peats: sulfur speciation and depth distributions of dsrAB genes and Cd, Fe, Mn, S, and Zn in soil cores.
    Martínez CE; Yáñez C; Yoon SJ; Bruns MA
    Environ Sci Technol; 2007 Aug; 41(15):5323-9. PubMed ID: 17822097
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Impacts of historical ditching on peat volume and carbon in northern Minnesota USA peatlands.
    Krause L; McCullough KJ; Kane ES; Kolka RK; Chimner RA; Lilleskov EA
    J Environ Manage; 2021 Oct; 296():113090. PubMed ID: 34256296
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Age, extent and carbon storage of the central Congo Basin peatland complex.
    Dargie GC; Lewis SL; Lawson IT; Mitchard ET; Page SE; Bocko YE; Ifo SA
    Nature; 2017 Feb; 542(7639):86-90. PubMed ID: 28077869
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Seasonal variation characteristics and influencing factors of dissolved organic carbon of soil water in permafrost peatlands of the Great Hing'an Mountains in summer and autumn.
    Jiang JY; Sun XX; Wang XW; Wang SJ; Ma GB; Chen N; DU Y
    Ying Yong Sheng Tai Xue Bao; 2023 Sep; 34(9):2413-2420. PubMed ID: 37899107
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Experimental drying intensifies burning and carbon losses in a northern peatland.
    Turetsky MR; Donahue WF; Benscoter BW
    Nat Commun; 2011 Nov; 2():514. PubMed ID: 22044993
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Role of recent climate change on carbon sequestration in peatland systems.
    Lunt PH; Fyfe RM; Tappin AD
    Sci Total Environ; 2019 Jun; 667():348-358. PubMed ID: 30833238
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dispersed ground ice of permafrost peatlands: Potential unaccounted carbon, nutrient and metal sources.
    Lim AG; Loiko SV; Kuzmina DM; Krickov IV; Shirokova LS; Kulizhsky SP; Vorobyev SN; Pokrovsky OS
    Chemosphere; 2021 Mar; 266():128953. PubMed ID: 33223213
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Constraints on potential enzyme activities in thermokarst bogs: Implications for the carbon balance of peatlands following thaw.
    Heffernan L; Jassey VEJ; Frederickson M; MacKenzie MD; Olefeldt D
    Glob Chang Biol; 2021 Oct; 27(19):4711-4726. PubMed ID: 34164885
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Peatland restoration pathways to mitigate greenhouse gas emissions and retain peat carbon.
    Mander Ü; Espenberg M; Melling L; Kull A
    Biogeochemistry; 2024; 167(4):523-543. PubMed ID: 38707516
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.